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Abstract

The main purpose of this research is to implement a multivariate feedback adjustment proportional to the last

deviation from the target, in the set of variables wandering around the target. To apply the controller equation it

will be necessary to study the exponentially weighted moving average (EWMA) statistic, in order to determine the

behavior of the target disturbances. To determine the forecast values of the variables we will use Seemingly

Unrelated Regression (SUR), which is necessary since there is a relationship between the variables and between the

errors. In this manner, multivariate feedback adjustment can be reached based on scientific grounds.
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1. Introduction

Feedback control systems are used in many industries and with various kinds of equipment.

A feedback system is the process of measuring an input variable, which is used to change the value of an

output variable, while output measurements are used to determine the manner in which one can

manipulate the input variables—hence, the name feedback. Feedback controllers are usually of the PID

(Proportional-Integral-Derivative) type because they are standard industrial components. Yet despite the

advantages, the problem of tuning PID controllers is a field in which much research can still be carried

out (Lee & Kim, 2000).

According to Astrom and Wittenmark (1989), the main idea of a self-tuning (ST) controller is to

separate the estimation problem from the control problem, since in most controllers there is an
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estimation algorithm that provides the estimated parameters to be used in the controller. The controller

uses these estimates made from the process, carrying out the necessary adjustments. If the estimation is

done independent of the control action, it is possible to do it externally from the production line,

and whenever the variables are known ahead of time, one can decide which restrictions should be

applied to the control variables.

Statistical Process Control (SPC) uses the measurements obtained in the process to carry out its

monitoring and find changes that might be occurring, without, however, prescribing a control

action. On the other hand, Engineering Process Control (EPC) uses the measurements obtained

from the process that reveal its behavior, which allows for the prescription of changes in variables

involved in the process, in order to make them the closest possible to the desired target. The joint

use of these two methodologies provides an efficient way of controlling the quality of products and

services.

Researchers such as Box, Hunter, and Hunter (1978), Box and Kramer (1992), Box and Luceño

(1997), Del Castillo (1996), Mac Gregor (1987), and Ramirez (1994) have presented several studies

and ways of carrying out the feedback adjustment, using a set of historical data that allows one to

determine the future behavior of the series. Most studies use the techniques cited above, applied to

sets of univariate data.

In this study we use a set of multivariate techniques for controlling the processes that have

several characteristics to be monitored and/or feedback, and which most of the time are treated as

independent variables. To achieve this objective we used a controller proportional to the error,

since a commonly found problem with this type of controller is that it needs to be adjusted or

synchronized each time operating conditions, specifications or some external factors change.

The controllers regulate the process, acting directly on the variables that will influence the final

characteristics of the product, such as temperature, flow of current, pressure and time for remaining

in each stage of the process.

The statement that ‘…the objective of any control system is to adjust variables to meet the

defined objectives of the process in regards to disturbances, using measurements of the variables…’

Ramirez (1994) is true when applied to a set of univariate data. This treatment can lead to

incorrect decisions if it is applied to a set of variables, for the univariate estimation does not

consider the interaction of the variables when estimating their equations. To implement a

multivariate controller one must consider the autocorrelation within and between the noise terms,

in this case multivariate moving average (MA) noise, and within and among the responses

Del Castillo (1996).

The main purpose of this article is to demonstrate how to achieve multivariate feedback control using

a controller proportional to the last error, in a production process with interrelated variables and

correlated errors. The vector autoregressive (VAR) model will be used to understand the relationship

between the variables, and to determine the gain that each variable will provide to the system.

After a detailed study of the techniques used in this study, we applied the proposed methodology in a

ceramic materials company that produces several types of tiles. The data were collected in a tunnel oven,

where it was possible to observe 12 temperature variables, each one composed of 92 observations.

The latter are pre-established according to the norms used by the company for burning ceramic

materials. Next, we identified the variables of major interest in the system, estimating the regression

equations, which were then used in the proposed feedback process, maintaining in this manner the

process close to the stipulated target value.
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2. Multivariate proportional feedback adjustment

A state of statistical control implies a random variation around the target value, caused by a wide

variety of common causes. Even though effort is made to maintain the process close to target, there are

several variables that cannot be controlled, such as room temperature, differences in raw materials,

differences between production lots, equipment or machinery wear-and-tear, and even differences

between operators, such as humor and satisfaction. These variables influence the process and are very

difficult to eliminate, and most of the time it is economically unfeasible to do so; in these circumstances,

an adjustment system is necessary (Box, 1991).

EPC has been discussed by several authors, such as Box and Luceño (1997), Box (1994), Box et al.

(1978), Box, Jenkins, Reinsel (1994), Del Castillo (1996), Montgomery, Keats, Runger and Messina

(1994), and Montgomery and Mastrangelo (1991), and Sachs, Hu, and Ingolfsson (1995). EPC is based

on estimation methods of the variables involved in the process, since determining future behavior makes

it possible to carry out the necessary system adjusting and tuning, thus maintaining stability.

With system feedback, corrections inputted into the system can be quantified, in order to be applied.

Such measures can be carried out obeying the expression (1), known as PI (proportional-integral)

controller because the control action can be reached whether action is applied using the proportional or the

integral part.

gXt ¼ k0 þ kPet þ kI

Xt

i¼1

ei; ð1Þ

Where Xt represents the variable that will undergo adjustment, which will have an effect of g units in the

system, designated system gain. The gain can be determined through physical properties of the variable or

curve adjustments, such as regression. The constants kP and kI correspond to the proportion in which each

term of the controller will contribute to the linear combination (Box, 1991; Box & Luceño, 1997). The

deviations of the target of a variable are represented by dt ¼ Xt 2 A; where Xt represents the variable that

is being analyzed and A is the target value for this variable.

In the feedback control scheme, in periods prior to time t—the time when the action will

happen—there are forecasted disturbance errors, represented by …et; et21; et22…; that determine the

level at which the input variable Xt should be manipulated in order to achieve the minimum errors

possible. In fact, what should be done, whenever possible, is to cancel the disturbance dt through

adjustment of the variable Xt; so that the process stays close to target. Therefore, Eq. (2) is written

Xtþ1 2 A ¼ dtþ1 þ gXt: ð2Þ

This relationship shows that in the instant t; the deviation of the target Xtþ1 2 A depends on the

disturbance dtþ1 and on the adjustment level gXt that the variable X suffered in the instant t:

Relationship (2) in the instant t shows that if one wanted to adjust Xt so that the right hand side

of Eq. (2) would become zero, there would be no deviations from the target in the instant t þ 1 and

Ztþ1 2 A would be zero. Unfortunately, this cannot be accomplished, since in the instant t we do not

know the value of dtþ1: However, in the instant t the disturbance d̂tþ1 can be forecasted, and one can

write that etþ1 ¼ dtþ1 2 d̂tþ1 is the forecast disturbance error. Therefore, relationship (2) can be written
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as in Eq. (3)

Ytþ1 2 A ¼ etþ1 þ d̂tþ1 þ gXt: ð3Þ

In fact, it is necessary to adjust Xt so that

gXt ¼ 2d̂tþ1; ð4Þ

Substituting Eq. (4) in Eq. (3), we have

Ytþ1 2 A ¼ etþ1: ð5Þ

This relationship shows that the deviation from the target in the process will be the forecasted

disturbance error. Relationship (4) shows the adjustment done in the instant t; but if the adjustment has to

be carried out in a prior instant, it is had that

gðXt 2 Xt21Þ ¼ 2ðd̂tþ1 2 d̂tÞ; ð6Þ

Yet it is known that ðd̂tþ1 2 d̂tÞ does not mean the value of the disturbance, but instead the error that was

made in forecasting the disturbance. This difference can be modeled according to exponentially

weighted moving average (EWMA) statistics, assuming the form shown in Eq. (7).

ðd̂tþ1 2 d̂tÞ ¼ lðdt 2 d̂tÞ ¼ let: ð7Þ

Substituting Eq. (7) in Eq. (6), the expression of adjustment is obtained, represented as

gðXt 2 Xt21Þ ¼ 2let; ð8Þ

where et represents the forecast disturbance error. By developing expression (8) a little more, we find

Xt 2 Xt21 ¼ 2
l

g
ðdt 2 d̂tÞ: ð9Þ

Comparing expression (1) and writing expression (8) as Xt ¼ Xt21 þ
l
g

et; it can be said that control

proportional to the error was established, in the discrete case. This proportionality is the amount that

measures the difference between the value that the variable should present and its current value.

Since the sample data are collected and measured in even intervals, and the adjustments shall also be

done in even intervals in relation to the disturbance of each variable, this is considered to be a discrete

adjustment system in relation to the disturbance of each variable. In this manner, Eq. (9) provides the

adjustment level that must be carried out in regards to the compensation variable. Constant g represents

the system gain, which measures the system quality changes that occurred in the variable ðXtÞ for each

unit altered, represented by the largest coefficient of the regression equation. This is estimated through

the VAR (vector auto-regression) model, capturing the joint effect of the variables. The smooth constant

l shall be the one that provides the lowest forecast error of the series of errors of the adjusted

disturbances provided by EWMA statistics.

According to Montgomery and Mastrangelo (1991), when the temperature is controlled by adjusting

the positioning of a control dial, EWMA statistics may be applied to the adjustment series of the control

dial, or equivalently, to the output sign that directs the positioning of the control dial. And if the

adjustment algorithm is working properly, problems that affect temperature shall be reflected in the dial

adjustments. We noted that EWMA statistics in the period t is the same as EWMA in the period t 2 1
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plus a l fraction of the error forecast one step ahead, and in this manner it is easy to see that EWMA is

simply the proportional term to the error (Hunter, 1986).

The idea of working with the proportional adjustment to the last error derives from the fact that it is

the forecast of the disturbance and this adjustment shall occur in each stage to cancel such forecast,

using the smooth constant l applied to the most recent observation, that is, to the last error, which also

avoids that an excessive compensation be applied in the system (Box & Luceño, 1994, 1997;

Montgomery, Keats, Runger, & Messina, 1994). Since the disturbances are forecast and then canceled at

each stage, there is no need for performing an integral control, which would represent the sum of all the

past residuals, which shall not influence the system, since in addition to already being corrected,

we would not know the real disturbances that would affect the system.

The control variable in an autoregressive process will be the own series in study in the prior instant

(Del Castillo, 1996), because when the production system is in lots, the observations form a series,

making it possible to forecast the values of the variables to be adjusted, and in turn, these values are used

to adjust the current lot.

3. Implementation and interpretation of the proposed controller

For an adjustment to succeed, two tasks are required: an identification process and the appropriate

application of the adjustment rules. With assistance from univariated and multivariate control charts, the

stability of the productive system was verified. The variables shall be identified by using the analysis of

the main components and the correlation analysis carried out between the main components and the

original variables. For calculating the correlation, we shall use the components that present the largest

instability, classified through the control charts.

After identifying the variables that will be adjusted, one should first find the target values for each

production lot. This value shall be generically represented by the letter A: The objective is to maintain

the process the closest possible to this value A; which shall be done through the manipulation of the input

variables.

The result in expression (9) supplies the adjustment level that should be applied to the compensation

variable, and its sign will indicate the number of units that the control dial should be rotated, since the

dial is equipped with a measurement scale to facilitate adjustment. If (þ), the regulator dial should be

rotated clockwise, liberating energy; if (2 ), the dial should be rotated counterclockwise, reducing the

amount of energy. In the multivariate system, more than one variable should undergo feedback

adjustment, and it should be pointed out that each variable will have its own value, possibly of varying

magnitudes.

The constant g represents the system gain, measuring the incurred alterations of the variable in

question of the system quality for each unit altered in the variable ðXtÞ; represented by the largest

coefficient of the regression equation. The variable is estimated simultaneously using the seemingly

unrelated regression (SUR) approach, so that the correlation between the stochastic terms is used to

improve the quality of the estimates, capturing the inter-relationship among the variables and the errors

(Enders, 1995; Hill, Griffiths, & Judg, 1999). This class of SUR models belongs to the VAR class,

proposed by Zellner (1962).

The variable control in an autoregressive process will be the series studied in the previous instant,

Del Castillo (1996). When the production systems are in lots, the observations form a series, making it
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possible to adjust the values of the variables using the forecasted value; next, the forecasted value of the

lot or the previous time in the series will be used to adjust the current lot.

The smooth constant l; will be found using EWMA statistics (Roberts, 1959), since according to Box

and Jenkins (1976), this statistical method is able to minimize the output variable through adjustments to

input variables in the process. Continuous measurements should be carried out to evaluate how far the

output variable is from the established target.

According to Montgomery and Mastrangelo (1991), when the temperature is controlled by adjustment

using a dial or a valve, EWMA statistics can be applied to the series of valve adjustments and the

controller’s sign will direct the dial or valve positioning. If the adjustment algorithm is working

properly, problems that affect the temperature will be reflected in the valve adjustments. One should note

that EWMA statistics in the period t is the same as EWMA in the period t 2 1 plus a fraction of the

error’s smooth constant l forecasted one-step-ahead (Hunter, 1986). Hence, EWMA is just the term

proportional to the last error. Using this methodology, we tried to establish a discerning routine to

calibrate the variables with the objective of maintaining the output variables as close as possible to the

established target.

4. Multivariate autoregressive models

Researchers and workers in the industrial field frequently obtain data that present several answers for

a given process, and this set of variables should be controlled. When the answer structure is multivariate,

a problem emerges regarding estimation of the parameters that do not exist in the univariated case, for the

parameter vector to be estimated must take into consideration the interrelationships between the

variables (Khuri & Conlon, 1981). The methodology of regression by Autoregressive Vectors (VAR)

enables a joint estimation of the parameters, whereby the interrelationships are considered and the

dynamic behavior of the data is captured. This provides an idea of the structure of the relationship

between the system’s input and output variables.

VAR enables the analysis not only of the individual behavior of each series, but also of the possible

relationships between the series and the dynamic relationships that occur between them in a given time

period. In this manner, it is possible to increase the accuracy of the estimates of the model, using the

additional information provided by the interrelationships, providing a reliable measurement with which

to carry out the feedback adjustment. The models, both univariate and multivariate, are much discussed

by authors such as Box and Jenkins (1970), Charenza and Deadman (1997), Hamilton (1994), Lütkepohl

(1991), Maddala (1992), and Reinsel (1993) who present the multivariate case as a generalization of the

univariate one.

An autoregressive vector is simply a system of dynamic linear equations in which each variable is

written as a function of a serially non-correlated variable and all the variables that belong to the system

have the same number of lags, represented by p: These lags determine the order of the model, which is

generically represented by VAR(p), as can be seen in Eq. (10)

Z1 ¼ nþ w1Zt21þ;…;þwpZt2p þ 1t ð10Þ

In Eq. (10), it is held that Zt is a random vector, w i is the matrix of the coefficients, n is the vector of the

intercepts, allowing the process average to be different from zero, and 1t is the white noise vector,
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also termed process innovation vector, that is: Eð1tÞ ¼ 0 e Eð1t1
0
tÞ ¼ S; where S is the matrix of

non-singular variance-covariance Eð1t1
0
sÞ ¼ 0 for s – t:

In the autoregressive model of first order, VAR(1), described as follows

Zt ¼ nþ w1Zt21 þ 1t; ð11Þ

taking the time factor, t ¼ 1; 2;…; t; one can write the following equations

Z1 ¼ nþ w1Z0 þ 11 ð12Þ

Z2 ¼ nþ w1Z1 þ 12; ð13Þ

substituting Eq. (11) in Eq. (12), one obtains the equation

Z2 ¼ nþ w1ðnþ w1Z0 þ 11Þ þ 12 ¼ ðIk þ w1Þnþ w2
1Z0 þ w111 þ 12 ð14Þ

..

.

Zt ¼ ðIk þ w1 þ · · · þ w t21
1 Þy þ w t

1Z0 þ
Xt21

i¼0

w i
11t2i: ð15Þ

Observing Eqs. (14) and (15), one notes that the autoregressive process is determined by an initial value

followed by the previous random shocks. The vectors Z1;…;Zt are determined solely by Z0; which is the

initial value plus the sum of 10s:

In this manner, it is clear that the multivariate model (15) can be represented by an infinite sum of lags

of errors plus the value of w t
1Z0; which will tend towards zero when t tends towards the infinitive.

Thus, the infinite autoregressive vector can be better termed as the finite moving average vector.

The VAR(1) model, whose autovalues w1 are less than 1, shall have stable parameters, which is a

condition that must be satisfied in order for the model to provide good forecasts (Cochrane, 1997).

The multivariate system must present a white noise process so that the errors are independent and

identically distributed, that is, 1t < iidNð0;SÞ: This condition guarantees the absence of any serial

correlation in the errors, in other words, the residuals are homoscedastic, presenting a constant variance.

According to Charenza and Deadman (1997), one can observe that the terms of the errors of a

multivariate autoregressive model of first order are contemporaneously correlated, that is,

Eð11tÞ ¼ Eð12tÞ ¼ 0; Eð12
1tÞ ¼ s11; Eð12

2tÞ ¼ s22; Eð11t12tÞ ¼ s12.

In order to obtain the uncorrelated errors, a weight by means of the variances must be carried out to

obtain the non-correlated errors. The interrelationship between the errors is neutralized by the weight of

the variables through the variances and covariances of the errors.

According to Enders (1995), if some of the equations have regressors that are not included in the

others, different variables on the right side of each equation or even if the variables have different lag

times, one must use the SUR estimator, in order to obtain efficiency in the VAR coefficient estimates,

obtaining a model termed ‘near VAR.’ The manner in which these parameters are estimated shall be

shown next.

On the conditions of simultaneity described previously, Zellner (1962) demonstrates that the method

of seemingly uncorrelated regressions (SUR) enables an estimation that is asymptotically more efficient

than one estimated equation by equation. An assumption that enables the use of a combined estimation

process—which is better than using the least squares method separately—is the connection of equations
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through errors. This assumption states that the stochastic terms in the equations, in the same instant,

are correlated. The addition of the contemporaneous correlation assumption effectively introduces

additional information not included when the least squares estimation is done separately (Hill et al.,

1999). The use of SUR provides information on the correlation between the stochastic terms, and for this

reason is more precise than the least squares process, and this fact is corroborated by the lower standard

deviations of the estimates.

The SUR estimation method allows for each equation to have its own functional form, taking into

consideration only the existing correlation between the errors of the Zellner equations (1962).

4.1. An example in a tile plant

During tile production, the only stages that do not allow for flexibility are the burning and drying

stages. Therefore, once it begins, the burning process cannot be interrupted or reversed, and one must

wait until the ceramic piece completes the burning cycle. The oven cannot be turned off frequently,

because since the time for cooling and calibration is around 27 days, the delay would represent a

great damage. The oven is composed of three heating zones. The first is termed pre-heating and has

average temperatures around 400 8C, represented by the variables PA1, PA2, PA3; the second is

termed zone of heating or burn zone with temperatures that vary from 600 to 1100 8C, represented by

the variables AQ1, AQ2, AQ3, AQ4, AQ5, AQ6; and, finally the cooling zone with temperatures

around 600 8C represented by the variables RF1, RF2 and RF3. These variables are arranged

sequentially along 87 m of a tunnel oven.

Multivariate feedback will be necessary because a group of variables will be analyzed

simultaneously, taking into consideration their inter-relationship. These variables—a total of 12—are

the temperatures of the burn points of the oven, forming a series containing 92 observations each,

taken in intervals of 1 h in the three burn zones.

Ceramic materials depend on the time they remain in each burn stage, on pre-heating time, burn time,

cooling time, and mainly on the uniformity of temperature in each stage. The biggest problems are

different gauges and sizes, low resistance materials, cracks, and materials with different coloration,

all which lead to lower prices and hence lower profit for the producer.

The modeling of the selected variables shall be carried out by the methodology proposed by

Zellner (1962). This way, it will be possible to determine the disturbances that each variable shall

present.

The steps to follow for this procedure are as follows:

† Estimate the equations separately using least squares;

† Use the residuals of least squares of the previous step to estimate the variances and covariance of the

errors;

† Use the estimates of the error variances to estimate the equations together;

As we wish to capture the inter-relationships between the variables, we use the variable previous to

the one identified as out of control and the next variable, because we are working with variables that are

sequentially distributed, then a set of three variables is used. The principal components analysis was used

to reduce the number of variables to be used, but mainly led to the identification of the variable or set of

variables that would be the possible cause of instability in the system.
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We used a group formed by three variables—distributed sequentially—to be modeled because it

is identified as being responsible for the stability of the temperatures in the heating and cooling

stages. Since these variables are interrelated and their errors are correlated, the NEAR VAR

methodology will be used to achieve a good level of efficiency in the estimates (Enders, 1995;

Zellner & Theil, 1962). The grouped variables will be considered dependent, and the system’s other

variables will enter as independent ones, forming in this manner the equation system to be

estimated.

The first group of variables to be modeled is formed by AQ6, RF1, RF2, and the second group

to be modeled is formed by AQ1, AQ2 and AQ3. The system’s other variables will be considered

with a lag of four periods. In this manner, not only the adjustment level for the identified variable

is obtained, but also the adjustment level that should be applied to the group of variables. Tables 1

and 2 present the adjusted values for the first and second group of identified variables, which were

estimated using PcFiml and PcGive software.

According to Sachs et al. (1995)) the so-called ‘Run-by-Run’ control structure is not restricted to

a model of first order and could be used for superior orders, as long as the control function

maintains process stability. Table 3 shows the variables with their target values, the forecasted

value and the disturbance for each one of the series in study.

Until this point, we have determined each variable’s disturbance, but it is still necessary to determine

the level of adjustment that should be applied to each selected variable, through the oven’s temperature

control dial.

Table 1

Estimation of the first set of variables identified by the variables AQ6, RF1 E RF2

Variable Coefficient Standard error

Modeling of variable (AQ6)t

Constant 318.19 123.11

ðAQ6Þt21 0.59543 0.080679

ðRF2Þt21 20.20977 0.081842

ðAQ5Þt 0.20646 0.052096

Modeling of variable (RF1)t

Constant 298.26 119.55

ðRF1Þt21 0.78693 0.051227

ðAQ2Þt22 20.27603 0.097528

ðAQ5Þt21 0.10266 0.047431

ðPA2Þt21 0.13931 0.054475

ðPA1Þt22 20.13698 0.060355

Modeling of variable (RF2)t

Constant 417.77 82.171

ðRF1Þt22 0.24361 0.049103

ðRF2Þt21 0.63258 0.069200

(AQ1)t 20.16966 0.051740

ðAQ2Þt22 20.16736 0.063493

ðAQ5Þt22 20.090479 0.032751
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4.2. Determining the smooth constant l

To apply the feedback equation, it is still necessary to know the value of the smooth constant l; shown

next.

The selection method of constant l is provided by Crowder (1987) and Lucas and Saccucci

(1990), whereby the one that presents the best performance for the EWMA chart in terms of ARL is

selected. Considering the correlated data, Montgomery and Mastrangelo (1991) suggest selecting

the value of l based on the minimization of the square sum of errors.

The value of the smooth constant l will be the one to offer the smallest forecast error of the series of

disturbance errors adjusted by EWMA statistics, as suggested by Montgomery and Mastrangelo (1991).

To find the smooth constant, a search was carried out in the interval [0.1; 0.99] with increments of 0.01.

This determined the best value for l that presented the minimum square error, which was 0.1 for all

variables, that is showed in Table 4.

Table 2

Estimation of the second set of variables identified by the variables AQ1, AQ2 E AQ3

Variable Coefficient Standard error

Modeling of variable (AQ1)t

Constant 373.33 76.619

ðAQ1Þt21 0.37055 0.091903

ðRF1Þt22 0.15948 0.061547

Modeling of variable (AQ2)t

Constant 735.69 129.01

ðAQ1Þt22 0.15657 0.075496

ðAQ2Þt21 0.33724 0.093757

ðAQ3Þt22 20.24767 0.087791

Modeling of variable ðAQ3Þt
Constant 935.66 99.707

ðAQ5Þt 0.25924 0.050534

ðAQ6Þt22 20.17007 0.0725519

Table 3

Target values, forecasted values and disturbance of the variables that will undergo feedback control

Variables Target value Forecasted value Disturbance

AQ6 1030.87 1034.661 23.791

RF1 806.37 802.5887 3.7813

RF2 607.859 604.7431 3.1159

AQ1 797.989 797.9714 0.0176

AQ2 935.326 935.4515 20.1255

AQ3 1045.62 1045.643 20.023
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4.3. Application of the control equation for system feedback

In this section we will determine the adjustment level that should be introduced in the system to

maintain the temperature as close as possible to the target value. The system is inspected and regulated in

one-hour intervals, since the alteration introduced in the system will be applied in the next instant, that is,

within the period of 1 h. This is termed responsive system (Box & Luceño, 1997).

The concept of controllers it is to separate the problem of estimation from the control problem

(Astrom & Wittenmark, 1989). It is interesting that an algorithm of recursive estimation supplies the

estimate parameters for the controller’s composition (Del Castillo, 1996). To apply the control equation

developed in item 2, it is sufficient to know the disturbance values of each variable, the constant g value

that will determine the effect in the productive system, and the smooth constant value:

Control equation for the first group Control equation for the second group

ðAQ6Þt 2 ðAQ6Þt21 ¼ 2ð0:10=0:59543Þ

ð23:791Þ ¼ 0:63668

ðAQ1Þt 2 ðAQ1Þt21 ¼ 2ð0:1=0:37055Þ

ð0:0176Þ ¼ 20:00475

ðRF1Þt 2 ðRF1Þt21 ¼ 2ð0:1=0:78693Þ

ð3:7813Þ ¼ 20:48051

ðAQ2Þt 2 ðAQ2Þt21 ¼ 2ð0:1=0:33724Þ

ð20:1255Þ ¼ 20:03721

ðRF2Þt 2 ðRF2Þt21 ¼ 2ð0:1=0:63285Þ

ð3:1159Þ ¼ 20:49236

ðAQ3Þt 2 ðAQ3Þt21 ¼ 2ð0:1=0:25924Þ

ð20:023Þ ¼ 0:00887

Through these equations, it is possible to know the adjustment level that should be applied to each

variable to maintain the process as close as possible to target. The controlling dial is equipped with a

scale, making it possible to apply an adjustment to variable AQ6 by rotating the dial by 0.63668, that is,

by 0.6 units clockwise, rotating 0.5 units. The temperature control dial of variable RF1 counterclockwise

and, finally, to apply an adjustment of 0.5 units to variable RF2, rotating its control dial

counterclockwise. In the second point one should note that the disturbance found in these variables is

very small, thus in this case a feedback adjustment is unnecessary. Still, a monitoring process is

necessary.

It should be pointed out that, in this case, as the process is correlated to the modification or the

alteration in one of the variables, it can alter the other variables. Therefore, in this research, the proposal

is to evaluate and accomplish feedback adjustment for groups of variables.

Table 4

Values of l that provided the lowest sum of the squares of errors

Variables Values of l Sum of the squares

of errors

AQ6 0.1 498.9784

RF1 0.1 322.3064

RF2 0.1 350.3542

AQ1 0.1 498.9784

AQ2 0.1 322.3064

AQ3 0.1 350.3542

A.M. Souza et al. / Computers & Industrial Engineering 46 (2004) 837–850 847



5. Conclusion

The objective of this study was to develop an auxiliary methodology for the monitoring and/or

feedback of a multivariate system, clearly stating all the steps to be followed and facilitating the

application of the method, while also connecting statistical control with EPC.

In the composition of the proposed controller, the smooth l and system gain g constants were found in

an efficient manner, rendering the adjustment efficient, since, according to Sachs et al. (1995), feedback

compensations are frequently taken based on the previous experience of professionals connected to the

process. The authors believe that the adjustment process represents a significant advance in the process

control technology, which recognizes the nature of the data and provides a structure with which to

control it.

To obtain the proposed controller, after the identification of the variables to be feedback, distinct phases

must be completed until the final execution. These phases are: modeling, identification, estimation, the

control project and monitoring. For this reason, the success of the application of algorithmic statistical

process control (ASPC) requires the cooperation not only of the professional in charge of making the

adjustments, but of professionals who are knowledgeable specifically in quality control and temporal

series, in order to ensure the successful performance of the proposed methodology (Tucker, Flatin, &

Wiel, 1993). This knowledge is important for the proper elaboration of models that represent the process,

to determine the experimental conditions, estimate parameters, validate results, determine the appropriate

control, implement and monitor the procedure. In many practical applications, technological support and

knowledge are not always available for elaborate methods, but there is a need to promote an advance in this

area since the most difficult problems require specialized knowledge to render the company more

competitive. However, the efforts of all production professionals and management support are

fundamental for the implementation of this methodology. The application of ASPC through the proposed

methodology is a very useful tool in the industrial field, for it allows for the adjustment of the productive

process to be made while the parts or products are still on the production line.

Yet at the same time that it is useful, there is also the risk of improper use of the methodology due to

lack of knowledge on behalf of professionals. For this reason we suggest training for the people involved

in the productive process, so that the proposed methodology may be adopted with success.

For a wider use of this research it would be interesting to apply it to other types of burning ovens that

have the same characteristics of the furnaces for burning ceramic pieces. It would also be useful to apply

it to multivariate processes that do not present the characteristics of variables in a linear sequence,

in processes such as beverage bottling, for example, which present characteristics such as pressure,

quantity of gas to be injected into the container, and volume of the liquid to be bottled, all of which must

be continuously controlled.

By applying methodology to a real case, it was possible to locate the out-of-control variables, with the

advantage of providing the operator with a starting point for system monitoring and/or feedback control,

to apply the necessary changes to the correct variables, without having to randomly choose which

variables should be adjusted.

The determination of the constant l and the gain of the system g in the feedback equation show how

multivariate feedback can be reached based on scientific grounds. The group estimation of the set of

variables was able to capture the inter-relationship between them, determining in this manner the effect

of each variable in the system.
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