Modelagem e previsão da taxa de ocupação hospitalar por meio de equações simultâneas: uma ferramenta de gestão

Fábio Mariano Bayer (PPGEP/CT/UFSM-RS) fabiobayer@smail.ufsm.br;
>Ria Bahia, 65, Bairro Parque Pinheiro Machado – CEP 97030-040 – Santa Maria RS
Adriano Mundim Oliveira (DE/CCNE/UFSM-RS) – amsoarava@smail.ufsm.br

Resumo
Pela reconhecida importância do Hospital Universitário de Santa Maria – HUSM, referência na região central do Estado do Rio Grande do Sul, quando se fala de Saúde Pública e pela carência de métodos científicos que viabilizem um melhor gerenciamento, resolve-se contribuir com a utilização de modelos estatísticos de previsão, como uma ferramenta auxiliar na mudança deste quadro. Neste estudo, são utilizados dados reais do HUSM, coletados mensalmente no período de janeiro de 2003 a dezembro de 2005, buscando-se prever-se a taxa de ocupação hospitalar (TOH), nos três setores de ingresso do hospital, que são: Hospital Geral (HG), Pronto Atendimento (PA) e Unidade Psiquiátrica (UP). A metodologia utilizada é de modelos de Equações Simultâneas, com estimador de Máximos Quadrados de Dois Estágios (MQ2E), no qual as variáveis consideradas endógenas são a TOH, nos três setores e as pré-determinadas são a Média de Permanência (MP), Índice de Resolução (IR) e Índice de Intervalo de Substituição (IIS). Lançando mão das previsões, os gestores podem melhor organizar-se para atender um maior número de pacientes, assim como diminuir os custos do hospital, aumentando a produtividade do sistema.

Palavras-chave: Modelos Equações Simultâneas; Previsão e Planejamento a curto Prazo; Saúde Pública.

Abstract
Due to the well-known importance of the "Hospital Universitário de Santa Maria – HUSM" (University Hospital of Santa Maria) – a reference in the state of Rio Grande do Sul xx – when it comes to Public Health Care xx, and due to the lack of scientific methods, which enable xx better management, it is common sense to contribute with xx statistical forecasting models, used as an auxiliary tool in order to change the situation. In this study, HUSM real data were used and were monthly collected xx, from January 2000 to December 2005, searching for hospital occupancy rates (HOR) in three hospital admission sectors, which are: General Hospital (GH), Emergency Room (ER) and Psychiatric Unit (PU). The methodology used is the model of Simultaneous Equations with Two-Stage Least Square estimator, in which the variables considered as endogenous are the (HOR) in the three sectors and the pre-determined ones are the Average Stay (AS), Renewing Rate (RR) and the Replacement Interval Rate (RIR). Taking forecasting into account, managers can get better organized in order to serve a larger number of patients, as well as to lower hospital costs, thus increasing the system efficiency. Keywords: Simultaneous Equation Models; Forecasting and Short-term planning; Public Health Care.

1. INTRODUÇÃO
Com base em conhecimentos e vivências regionais, pode-se dizer que a saúde pública no Rio Grande do Sul é um setor complexo e de grande importância, que se encontra carente de métodos científicos que viabilizem novas formas de gerenciamento. Então, vem-se como objetivo desta pesquisa, a utilização de modelos estatísticos, como ferramentas eficazes para a previsão da taxa de ocupação hospitalar (TOH), na busca da qualidade e produtividade na saúde pública, pois acredita-se que os gestores hospitalares não podem ficar à mercê de decisões subjetivas, baseadas apenas na sensibilidade, intuição e bom-senso.

Neste trabalho, mostra-se um Modelo de Equações Simultâneas, aplicado à previsão da taxa de ocupação hospitalar (TOH) do Hospital Universitário de Santa Maria (HUSM). O hospital localiza-se na região central do Estado do Rio Grande do Sul e é referência regional quando se fala de saúde pública. Devido à sua localização e reconhecida competência, o hospital atira pessoas dos mais diversos lugares do Estado e até mesmo de fora dele. O HUSM estabelece-se como Centro de Ensino, Pesquisa e Assistência, no âmbito das Ciências da Saúde, com a manutenção de ações voltadas à saúde da comunidade local e regional, desenvolvendo programas específicos de assistência à população.

A partir da noutável importância do hospital e do papel que desempenha, desenvolve-se um modelo quantitativo, por meio de um sistema de equações simultâneas, com o objetivo de fazer a previsão da taxa de ocupação hospitalar, nos três setores de ingresso no hospital, que são: o setor denominado Hospital Geral (HG), Pronto Atendimento (PA) e Unidade Psiquiátrica (UP). Com estas previsões, pretende-se fornecer subsídios para os tomadores de decisão, em relação ao gerenciamento dos leitos disponibilizados em cada setor, pois, segundo Morettin & Tolo (2004), a previsão não constitui um fim em si, mas um meio de fornecer informações para a consequente tomada de decisão, visando a determinados objetivos.

Com este estudo, torna-se possível antever a taxa de ocupação hospitalar, em cada setor do hospital, projetando hipóteses que retratem de forma clara e precisa a realidade dos dados e identificando futuros problemas de demanda hospitalar, possibilitando a procura de alternativas para solução nos ou mesmo evitá-los.

O artigo encontra-se estruturado em 6 seções, onde na seção 2, apresenta-se a justificativa do trabalho, apresentando argumentos sobre a importância dos resultados. Na seção 3, desenvolve-se a metodologia do trabalho. A revisão de literatura é mostrada na seção 4 e na seção 5 enfocam-se os resultados empíricos, sendo responsável pela análise descritiva e exploratória dos dados, assim como a modelagem e previsão da variável de interesse. Finalmente, na seção 6, estão as conclusões e sugestões.

2. JUSTIFICATIVA
O hospital universitário é uma organização peculiarmente complexa. Sua missão organizacional primordial é recuperar, manter e incrementar os padrões de saúde de seres humanos. Essa missão demanda um conjunto altamente divergente e complexo de atividades, tais como, a realização de atendimentos médicos, diagnósticos e tratamentos, planejamento e execução de intervenções e intervenções cirúrgicas, a prática do ensino e do pesquisa e a formação de profissionais de saúde.

O hospital médico e terapêutico, como temos hoje, começou a surgir no século XVIII, por motivos econômicos e políticos (CALVO, 2002), onde, desde então, vem sendo tratado como uma firma prestadora de serviços, destinada a oferecer assistência médico-hospitalar de forma sistemática, moldando o hospital como um sistema produtivo.

Neste ponto de vista produtivo, o pressuposto básico da microeconomia é de que os recursos são geridos por uma firma de forma eficiente, isto é, que ela está sempre buscando utilizar as menores quantidades de insumos possíveis, para gerar determinadas quantidades de produtos, caso o seu objetivo seja minimizar custos (VARIAN, 1992). Entretanto, caso seu objetivo seja maximizar os lucros, então o gestor procurará...
gerar a maior quantidade de produtos possíveis com os insumos existentes. A análise da firma, sob a ótica da eficiência permite verificar se a gestão é eficiente ou não, onde, de acordo com Frainer (2004), o HUSM ainda pode aumentar a sua eficiência, sendo que nesta pesquisa, parte-se do pressuposto de que falha esta na forma como estão sendo geridos os recursos no hospital (eficiência alocativa) e não no problema técnico (eficiência técnica).

Ao contrário, porém, dos hospitais privados, onde o objetivo da gestão é maximizar os lucros, nos hospitais públicos, como o caso do HUSM, os gestores possuem o objetivo principal de atender o maior número possível de pacientes, com o menor custo possível, sendo que eles não podem recusar atendimento a pacientes, pois a sua finalidade é promover o bem-estar social da população de sua área de abrangência. Além do mais, gerar uma maior quantidade de produtos, com a mesma quantidade de insumos, ou seja, atender o maior número de pessoas, sem aumentar consideravelmente os recursos financeiros do hospital, faz importante, pois a maioria dos hospitais universitários federais têm como fonte de recursos apenas as verbas limitadas do Sistema Único de Saúde (SUS) e do Ministério de Educação e Cultura (MEC).

Nesta perspectiva de trabalho, entende-se que os administradores de hospitais devem lançar mão de conhecimentos, como pesquisa operacional, estatística, análise de sistemas, economia, entre outros, para analisar as informações e traçarem planteadamentos. A análise dessas informações torna-se extremamente importante, quando se pretende atingir o ótimo e todo hospital tem o objetivo de otimizar seu atendimento, seja para aumentar os lucros (hospitais privados) seja para minimizar custos (hospital públicos), aumentando a produtividade, ou mesmo a fim de servir como referência no atendimento.

3. METODOLOGIA

Este trabalho, de acordo com Gil (2006), caracteriza-se como uma pesquisa aplicada, uma vez que integra pesquisa bibliográfica e estudo de caso, desenvolvida de forma a quantificar as informações obtidas, caracterizando-se também, como uma abordagem quantitativa. Quando os objetivos, classifica-se como exploratória, pois tem o objetivo de esclarecer e desenvolver idéias baseadas na análise dos dados, gerando subsídios a futuras tomadas de decisão. Entende-se o processo como um método científico induutivo, pois se trata de um estudo teórico aplicado a uma determinada situação, em que generalizações poderão ser frutos de constatações particulares da realidade, gerando possíveis hipóteses a estudos futuros.

As variáveis envolvidas neste estudo são o Índice de Intervalo de Substituição (IIS) que assinala o tempo médio que um leito permanece desocupado, entre a saída de um paciente e a admissão de outro, a Média de Permanência (MPe) que é a relação numérica entre o total de pacientes/dia e o total de leitos/leitos, no mesmo período, o Índice de Renovação (IR), que é relação entre o número de pacientes saídos durante determinado período e o número de leitos ativos disponíveis ao período, nas quais estas três variáveis (IIS, MPe e IR) são consideradas endógenas a uma Equação Ocupação Hospitalar (TOH) como variável endógena, simplificando o complexo de ocupação hospitalar para um futuro próximo.

As variáveis envolvidas neste estudo, referem-se aos indicadores hospitalares de produtividade, sendo as decisões gerenciais galoqadas nestas variáveis, por esse motivo as mesmas foram estudadas. O modelo a ser estimado passará a representar as inter-relações que as variáveis possuem, assim como a previsão, em nível da taxa de ocupação hospitalar, para um futuro próximo.

A coleta de dados ocorreu no setor de estatística do HUSM, com observações mensais de janeiro de 2000 a dezembro de 2005, nos três setores de internação do Hospital, que são: o Hospital Geral (HG), o Pronto Atendimento (PA) e a Unidade Psiquiátrica (UP).

Os passos metodológicos para a realização desta pesquisa consistem de uma análise exploratória de dados, que possibilitou o conhecimento e caracterização das variáveis, por meio das estatísticas de média, desvio-padrão e coeficiente de variação de Pearson. Após a descrição das variáveis, busca-se um Modelo de Equações Simultâneas, para a variável TOH, nos três setores do HUSM, utilizando-se como estimador, o método dos Mínimos Quadrados em Dois Estágios (MQ2E), seguindo também, a metodologia do geral para o específico, onde as variáveis, que inicialmente constituíam o modelo eram definidas de ordem 3, sendo paulisticamente retiradas do modelo, aquelas que não foram estatisticamente significativas, mediana teste de hipóteses.

Aqui é apresentado o modelo que melhor represente as variáveis em estudo e que satisfaça as hipóteses e análise dos resíduos, ela será utilizada para realizar previsões a curto prazo. Essas previsões poderão ser utilizadas pela equipe gerencial do HUSM, servindo de balizamento nas decisões e reivindicações necessárias para o seu bom andamento, tornando-se uma importante ferramenta para a organização hospitalar.

4. DESenvolvimento

Em uma primeira abordagem, estimou-se a taxa de ocupação hospitalar em cada setor do hospital, separadamente, utilizando-se modelos multivariados de regressão dinâmica, com o estimador dos Mínimos Quadrados Ordinários (MQO). Os modelos consistiam da seguinte forma geral:

\[
\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 Y_{t-1} + \ldots + \hat{\beta}_k Y_{t-k} + \hat{\beta}_i X_{t-1} + \ldots + \hat{\beta}_j X_{t-j} + \hat{\beta}_k X_{t-k} + \ldots + \hat{\beta}_m X_{t-m} + \hat{\beta}_n X_{t-n} + \ldots + \hat{\beta}_q X_{t-q} + \epsilon_t
\]

(1)

Onde os índices i,j são as variáveis e parâmetros com i defasagens.

Sabe-se, no entanto, que existe uma relação entre os setores do hospital. Um exemplo disso seria o fato de que muitos pacientes ingressam primariamente pelo PA e, em seguida, serão encaminhados diretamente para uma das clínicas do Hospital Geral ou Unidade Psiquiátrica, de acordo com o seu diagnóstico. Lançando mão dessas informações, reuniram-se as variáveis conjuntamente dependentes, que são a taxa de ocupação hospitalar dos três setores de ingresso, denotados como TOHHG, TOHPA e TOHUP, um conjunto de variáveis que podem ser determinadas, simultaneamente, pelo conjunto restante de variáveis.

Com o modelo geral de equações simultâneas, com três equações, terá a seguinte forma:

\[
\begin{align*}
\hat{Y}_{HG} &= \hat{\beta}_{0HG} + \hat{\beta}_{1HG} Y_{HG, t-1} + \ldots + \hat{\beta}_{kHG} Y_{HG, t-k} + \hat{\beta}_{iHG} X_{HG, t-1} + \ldots + \hat{\beta}_{jHG} X_{HG, t-j} + \hat{\beta}_{kHG} X_{HG, t-k} + \ldots + \hat{\beta}_{mHG} X_{HG, t-m} + \hat{\beta}_{nHG} X_{HG, t-n} + \ldots + \hat{\beta}_{qHG} X_{HG, t-q} + \epsilon_{HG, t} \\
\hat{Y}_{PA} &= \hat{\beta}_{0PA} + \hat{\beta}_{1PA} Y_{PA, t-1} + \ldots + \hat{\beta}_{kPA} Y_{PA, t-k} + \hat{\beta}_{iPA} X_{PA, t-1} + \ldots + \hat{\beta}_{jPA} X_{PA, t-j} + \hat{\beta}_{kPA} X_{PA, t-k} + \ldots + \hat{\beta}_{mPA} X_{PA, t-m} + \hat{\beta}_{nPA} X_{PA, t-n} + \ldots + \hat{\beta}_{qPA} X_{PA, t-q} + \epsilon_{PA, t} \\
\hat{Y}_{UP} &= \hat{\beta}_{0UP} + \hat{\beta}_{1UP} Y_{UP, t-1} + \ldots + \hat{\beta}_{kUP} Y_{UP, t-k} + \hat{\beta}_{iUP} X_{UP, t-1} + \ldots + \hat{\beta}_{jUP} X_{UP, t-j} + \hat{\beta}_{kUP} X_{UP, t-k} + \ldots + \hat{\beta}_{mUP} X_{UP, t-m} + \hat{\beta}_{nUP} X_{UP, t-n} + \ldots + \hat{\beta}_{qUP} X_{UP, t-q} + \epsilon_{UP, t} \\
\end{align*}
\]

(2)

Onde o parâmetro \(\hat{\beta}_{0HG}\) é o parâmetro associado à variável \(X_{HG}\) exogênea equação \(m\) e \(i\) defasagens e o parâmetro \(\hat{\beta}_{0PA}\) é o parâmetro associado à variável endógena \(Y_{PA}\) da equação \(m\) e \(i\) defasagens.

Neste modelo, pode-se notar uma característica especial dos modelos de equações simultâneas, que é o fato de uma variável endógena de uma equação, aparecer como uma variável explicativa, do lado direito de outra equação do sistema. Nestes casos de simultaneidade e, ainda, quando não apresentam resultados correlacionados \(\text{Cov}(\epsilon_{ij}, \epsilon_{jk}) = \text{Cov}(\epsilon_{ij}, \epsilon_{ik}) \neq 0\) o método que dará estimadores consistentes, é o Método de Mínimos Quadrados em Dois Estágios (MQ2E)(HILL, 1999; GUJARATI, 2000).

4.1. Modelo de Equações Simultâneas

Pesquisadores e trabalhadores, do campo industrial e de serviços, frequentemente obtêm dados que apresentam diversas respostas para um determinado processo, sendo que esse conjunto de variáveis deve ser controlado. Quando a estrutura da resposta é multivariada, surge um problema na estimação dos parâmetros não existente, no caso univariado, onde não existe mais de uma variável determinada dentro do modelo, pois os parâmetros a serem estimados, devem levar em consolidação as inter-relações entre as va.
4.2. A questão da inconsistência dos estimadores de MQO em Modelos de Equações Simultâneas

Para explicar a falha na estimação por MQO, em Modelos Simultâneos, considere o seguinte sistema de equações, abrigo, baseado no modelo de oferta e demanda, adaptado de Hill (1999). O sistema segue o formato da Eq. 2, porém mais simples e com menos variáveis, por questões obvias de cálculos e manipulações algébricas e intuitivas:

\[
\begin{align*}
Y_1 &= \alpha_1 + \alpha_2 x_1 + \alpha_3 Y_2 + \epsilon_1 \\
Y_2 &= \beta_1 + \beta_2 Y_1 + \beta_3 x_2 + \epsilon_2
\end{align*}
\]
(3)

Utilizando esse modelo de duas equações, considere o seguinte esquema intuitivo:

1. Para uma pequena variação de \(\epsilon_1 \) da primeira equação, esta é transmitida de forma direta para a variável \(Y_1 \) do lado esquerdo da equação.
2. Como as equações estão interligadas por um sistema simultâneo, esta variação em \(Y_1 \) implica em uma variação também em \(Y_2 \), como mostra as partes 2 e 3 do esquema acima;
3. Então, o valor de \(Y_2 \) variado com a influência de \(\epsilon_1 \), como se trata de um sistema de equações simultâneas, encontra-se também, no lado direito da primeira equação, de acordo com a parte 4.

Com isso, nota-se que a cada variação do termo \(\epsilon_1 \) da primeira equação, corresponde a uma variação no termo \(Y_2 \), também na primeira equação, ocorrendo uma correlação positiva entre os regressores, não satisfazendo a hipótese do modelo clássico de MQO de não correlação entre os regressores e o erro.

Com a ausência dessa hipótese, o método dos MQO super, estimará o parâmetro \(\epsilon_1 \) tendendo positivamente, mesmo em grandes amostras. Esta tendênciasidade mostra que o MQO será inconsistente, mesmo para amostras próximas da população. Portanto a distribuição de probabilidade do estimador MQO convergirá para um ponto, que não é o verdadeiro valor do parâmetro.

Com isso, pode-se afirmar que "O estimador de mínimos quadrados dos parâmetros em uma equação estrutural simultânea é tendencioso e inconsistente, em virtude da correlação entre o erro e as variáveis endógenas no lado direito das equações," (HILL, 1999, p. 320).

Para estimar consistentemente os parâmetros de um modelo simultâneo, um dos métodos mais utilizados é o Método dos Mínimos Quadrados de Dois Estágios (MQ2E).

4.1. Estimação consistente pelo Método dos Mínimos Quadrados de Dois Estágios (MQ2E)

Para ilustrar o funcionamento do estimador de MQ2E, considere ainda o modelo simples, dado no sistema da Eq. 3.

Em um primeiro momento, não podemos aplicar o estimador de MQO, pois existe a variável endógena \(Y_2 \), no lado direito da primeira equação e \(Y_1 \), no lado direito da segunda equação, juntamente com os regressores. Então, o primeiro passo será encontrar a equação reduzida, a qual consistirá apenas de uma variável endógena, no lado esquerdo e variáveis predeterminadas, no lado direito, de acordo com a hipótese do modelo clássico dos MQO.

Para isso, substitui-se a segunda equação da Eq. 3 na primeira equação, obtendo o seguinte:
5. RESULTADOS E DISCUSSÕES

Neste item, serão abordadas a estatística descritiva das variáveis envolvidas neste estudo e a modelagem das variáveis endógenas, assim como as suas previsões.

5.1. Análise Descritiva dos Dados

A estatística univariada tradicional consideia as variáveis de forma independente, não particularizando suas possíveis inter-relações, mas é de suma importância no desenvolvimento de trabalhos científicos, pois ela é capaz de mostrar como as variáveis em análise estão se comportando. Inicialmente, faz-se um estudo por meio das estatísticas de média, desvio-padrão e coeficiente de variação, de forma a verificar o seu comportamento. Estes resultados estão apresentados na Tabela 1.

<table>
<thead>
<tr>
<th>Estatística Descriptiva do Hospital Geral (HG)</th>
<th>TOH</th>
<th>MPe</th>
<th>IIS</th>
<th>IR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Média</td>
<td>85,35678</td>
<td>8,82412</td>
<td>1,591458</td>
<td>2,950858</td>
</tr>
<tr>
<td>Desvio-Padrão</td>
<td>7,5420272</td>
<td>0,575282</td>
<td>0,953777</td>
<td>0,285215</td>
</tr>
<tr>
<td>Coef. Variação (%)</td>
<td>0,088104</td>
<td>0,065192</td>
<td>0,602452</td>
<td>0,098994</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Estatística Descriptiva do Pronto Atendimento (PA)</th>
<th>TOH</th>
<th>MPe</th>
<th>IIS</th>
<th>IR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Média</td>
<td>169,3062</td>
<td>3,623066</td>
<td>1,498194</td>
<td>13,57796</td>
</tr>
<tr>
<td>Desvio-padrão</td>
<td>30,92207</td>
<td>0,931611</td>
<td>0,988897</td>
<td>2,587588</td>
</tr>
<tr>
<td>Coef. Variação (%)</td>
<td>0,299797</td>
<td>0,248682</td>
<td>0,062655</td>
<td>0,190555</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Estatísticas Descriptivas da Unidade Psiquiátrica (UP)</th>
<th>TOH</th>
<th>MPe</th>
<th>IIS</th>
<th>IR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Média</td>
<td>82,45192</td>
<td>16,03383</td>
<td>4,143812</td>
<td>1,58722</td>
</tr>
<tr>
<td>Desvio-padrão</td>
<td>15,22335</td>
<td>2,283088</td>
<td>4,599037</td>
<td>0,321593</td>
</tr>
<tr>
<td>Coef. Variação (%)</td>
<td>0,184633</td>
<td>0,142392</td>
<td>1,204214</td>
<td>0,209444</td>
</tr>
</tbody>
</table>

A Tabela 1 é auto-explícita. No entanto, observando-se os coeficientes de variação de todas as variáveis, pode-se notar que o índice de intervalo de substituição é a única variável que apresenta um alto grau de dispersão, tornando a média não significativa. Também, é pertinente destacar que o pronto atendimento possui um coeficiente de variação maior, por ser um setor de atendimentos emergenciais, com uma média de permanência menor e com uma densidade muito maior de pacientes.

Outro fato interessante a salientar, é que a taxa de ocupação do Pronto Atendimento (PA), revela um percentual de leitos ocupados fora da capacidade, com um valor ultrapassando 100%, pois de acordo com as medidas e indicadores da terminologia básica em saúde, do Ministério da Saúde (Brasil, 1983), a taxa
5.2. Modelagem e Previsão das Variáveis

Neste estudo, a modelagem obedece à metodologia geral para especifico "the General to Specific" da Escola de Economia de Londres (London School of Economics). Neste caso, parte-se de um modelo matemático, com uma estrutura de 3 defasagens em cada variável e chega-se a um modelo especificado, seguindo o princípio da parcimônia, no qual, aplicando o teste "t" de hipótese, vão sendo verificadas quais parâmetros são significativos para o modelo e quais não são, excluindo os não significativos e reduzindo o modelo ao que se encontra na Tabela 2.

<table>
<thead>
<tr>
<th>TABELA 2 – Modelo de Equações Simultâneas para TOHIG, TOHPA e TOHUP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equação para taxa de ocupação hospitalar do Hospital Geral (TOHIG)</td>
</tr>
<tr>
<td>Coeficiente</td>
</tr>
<tr>
<td>---------------</td>
</tr>
<tr>
<td>TOHIG_3</td>
</tr>
<tr>
<td>MpeHG</td>
</tr>
<tr>
<td>IISHG</td>
</tr>
<tr>
<td>ISHG_3</td>
</tr>
<tr>
<td>IRHG</td>
</tr>
<tr>
<td>IRHG_3</td>
</tr>
<tr>
<td>IRUP</td>
</tr>
<tr>
<td>TOHUP</td>
</tr>
</tbody>
</table>

Equação para taxa de ocupação hospitalar do Pronto Atendimento (TOHPA)

<table>
<thead>
<tr>
<th>Coeficiente</th>
<th>Erro Padrão</th>
<th>Estatística t</th>
<th>t-prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOHPA_2</td>
<td>0.0612367</td>
<td>0.02020</td>
<td>3.03</td>
</tr>
<tr>
<td>MpePA_1</td>
<td>3.69072</td>
<td>0.843</td>
<td>4.39</td>
</tr>
<tr>
<td>IISPA</td>
<td>-39.7322</td>
<td>0.956</td>
<td>-41.4</td>
</tr>
<tr>
<td>IRPA</td>
<td>5.35861</td>
<td>0.2883</td>
<td>18.7</td>
</tr>
<tr>
<td>TOHUP</td>
<td>0.148619</td>
<td>0.03749</td>
<td>4.00</td>
</tr>
</tbody>
</table>

Equação para taxa de ocupação hospitalar da Unidade Psiquiátrica (TOHUP)

<table>
<thead>
<tr>
<th>Coeficiente</th>
<th>Erro Padrão</th>
<th>Estatística t</th>
<th>t-prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOHUP_2</td>
<td>0.110483</td>
<td>0.03426</td>
<td>3.22</td>
</tr>
<tr>
<td>MpeHG</td>
<td>-4.3877</td>
<td>0.841</td>
<td>-5.19</td>
</tr>
<tr>
<td>IRHG</td>
<td>-16.1196</td>
<td>2.264</td>
<td>-7.12</td>
</tr>
<tr>
<td>MpeUP</td>
<td>4.27697</td>
<td>0.1593</td>
<td>26.9</td>
</tr>
<tr>
<td>IISUP</td>
<td>-0.740861</td>
<td>0.1227</td>
<td>-6.04</td>
</tr>
<tr>
<td>IRUP</td>
<td>38.5864</td>
<td>0.2072</td>
<td>18.6</td>
</tr>
<tr>
<td>TOHIG</td>
<td>0.378968</td>
<td>0.09854</td>
<td>3.85</td>
</tr>
</tbody>
</table>

Analisando o modelo encontrado, percebe-se que a influência entre os setores do hospital não é tão significativa quanto o pressuposto dos conhecimentos a priori. Nota-se que os coeficientes nas variáveis endogênicas, incluídas no lado direito de outras equações, não possuem um valor que caracterize uma forte inter-relação entre tais variáveis, porém opta-se em deixá-los, embasados em conhecimentos de campo.

O sistema multivariado de equações simultâneas deve apresentar um processo ruido branco, de forma que os erros sejam independentes e idênticos distribuídos, ou seja, rt = i.id (0,2). Esta hipótese garante a ausência de qualquer correlação serial entre os erros, que se os resíduos sejam homoscedásticos, apresentando uma variância constante e seguindo a distribuição normal. Então, realizada a análise dos erros, todas estas hipóteses são satisfeitas a um bom nível de significância e opta-se por utilizar o modelo encontrado para fazer as previsões que se encontram na Tabela 3.

<table>
<thead>
<tr>
<th>TABELA 3 – Valores reais e previstos da taxa de ocupação hospitalar em cada setor do HUSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Período</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>07/2005</td>
</tr>
<tr>
<td>08/2005</td>
</tr>
<tr>
<td>09/2005</td>
</tr>
<tr>
<td>10/2005</td>
</tr>
<tr>
<td>11/2005</td>
</tr>
<tr>
<td>12/2005</td>
</tr>
</tbody>
</table>

R² = 0.99

<table>
<thead>
<tr>
<th>TABELA 3 – Valores reais e previstos da taxa de ocupação hospitalar do Pronto Atendimento (TOHPA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Período</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>07/2005</td>
</tr>
<tr>
<td>08/2005</td>
</tr>
<tr>
<td>09/2005</td>
</tr>
<tr>
<td>10/2005</td>
</tr>
<tr>
<td>11/2005</td>
</tr>
<tr>
<td>12/2005</td>
</tr>
</tbody>
</table>

R² = 0.99

<table>
<thead>
<tr>
<th>TABELA 3 – Valores reais e previstos da taxa de ocupação hospitalar da Unidade Psiquiátrica (TOHUP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Período</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>07/2005</td>
</tr>
<tr>
<td>08/2005</td>
</tr>
<tr>
<td>09/2005</td>
</tr>
<tr>
<td>10/2005</td>
</tr>
<tr>
<td>11/2005</td>
</tr>
<tr>
<td>12/2005</td>
</tr>
</tbody>
</table>
Observando-se a Tabela 3, nota-se que o modelo fornece boas previsões para a variável taxa de ocupação, com valores próximos da realidade e com um alto coeficiente de determinação (R²). Este alto valor de R² pode ser um indicativo de multicolinearidade, ou seja, de que existem relações lineares perfeitas entre as variáveis previamente determinadas, não satisfazendo uma das hipóteses dos modelos econômicos. No entanto, de acordo com Gujarati (2000, p. 343), “se a única finalidade da análise de regressão for a previsão, então a multicolinearidade não é um problema, pois, quanto mais alto o R², melhor a previsão”. Logo, neste estudo não nos preocupamos com a presença, ou não, de multicolinearidade, pois a única finalidade é fazer previsões, fazendo com que sua presença indique apenas uma boa adequação do modelo aos dados coletados.

Esta boa adequação do modelo é corroborado pelo fato de estar sendo utilizadas equações que levam em consideração as defasagens das variáveis e que inter-relacionam as setores do hospital, pontos que não seriam preconizados por uma abordagem tradicional de equação única, fornecendo boas estimativas para os valores futuros.

6. CONCLUSÕES

Esta pesquisa teve como propósito, o estudo de modelos estatísticos de previsões, no qual foram utilizados dados reais do Hospital Universitário de Santa Maria – HUSM, coletados mensalmente, durante o período de janeiro de 2000 a dezembro de 2005, totalizando 72 observações. O estudo resultou em uma aplicação, através da estimação de um Modelo de Equações Simultâneas, para a previsão da taxa de ocupação hospitalar do HUSM.

A metodologia utilizada foi a de Modelos de Equações Estruturais Simultâneas, onde os parâmetros foram estimados, usando-se o método dos Mínimos Quadrados de Dois Estágios (MQE2), onde se contempla a inter-relação das variáveis endógenas, mostrando-se uma técnica eficiente, para o estudo da taxa de ocupação hospitalar, pois os valores previsões estão bem próximos dos valores reais.

Por ser um estudo que abrange todos os setores de ingresso do HUSM (HG, PA e UP), pode-se ter um bom retrato do funcionamento do hospital, assim como sua procura e operação, servindo como uma forma de avaliação da demanda de leitos hospitalares que terão para os meses subsequentes, através de previsões. Pois de posse desses valores, a direção do HUSM poderá melhor organizar-se para manter um bom ritmo de trabalho, lançando mão das previsões para a otimização do atendimento, com o remanejamento de leitos de setores menores sensíveis para setores com maior demanda, organização de estoques e outras atividades pertinentes à gestão de hospitais públicos.

Pretende-se realizar as previsões com dados atualizados e manter um banco de dados que possibilite previsões mensais, pois pelo exposto, vê-se que os métodos estatísticos, aplicados ao setor da saúde, podem contribuir para a formação de políticas de giro de ocupação e auxiliar na tomada de decisões. A disseminação destes resultados se dá pelo envio de relatórios parciais para o setor de estatística do HUSM, assim como o contato direto com a responsável do setor; desta forma, possibilita-se sua utilização adequada.

7. AGRADECIMENTOS

8. REFERÊNCIAS BIBLIOGRÁFICAS

KHURI A. I.; CONLON M. Simultaneous optimization of multiple responses represented by polynomial regression functions. Technometrics, November; v. 23, n.4, 1981.

