Prova Escrita de Seleção Mestrado em Matemática - 2017.1

Orientações:

- Esta prova tem frente e verso, com 10 questões no total.
- Resolver as questões nas folhas indicadas, utilizando-se o verso se necessário.
- Pode-se utilizar lápis na resolução das questões.
- A duração da prova é de no máximo 5 horas.
- A prova deve ser resolvida individualmente e sem consulta.

Tópicos de Análise na Reta

Notações

- \mathbb{R} denota o corpo dos números reais e $\mathbb{N} = \{1, 2, 3, \ldots\}$ denota o conjunto dos números naturais;
- $(a_n) = (a_1, a_2, \ldots, a_n, \ldots)$ representa uma sequência em \mathbb{R} ;
- (a_n) é não decrescente $\Leftrightarrow a_n \leq a_{n+1}, \ \forall \ n \in \mathbb{N};$
- $\mathbb{R}^+ = \{x \in \mathbb{R}; x > 0\};$
- \bullet sup A e inf A denotam respectivamente, o supremo e o ínfimo de um conjunto A.

Questões

- 1. (1,0) Seja (a_n) uma sequência em \mathbb{R} , com $a_n > 0$, para todo $n \in \mathbb{N}$.
- (a) (0,5) Se $\lim_{n\to+\infty} \frac{a_{n+1}}{a_n} < 1$, então prove que a série $\sum_{n=1}^{\infty} a_n$ converge.
- (b) (0,5) Suponha que $\sum_{n=1}^{\infty} a_n$ seja uma série convergente. Prove que se (b_n) é uma sequência

limitada, então a série $\sum_{n=1}^{\infty} a_n b_n$ também é convergente.

2. (1,0) Seja (a_n) uma sequência não decrescente em \mathbb{R} . Prove que se (a_n) possui uma subsequência limitada, então

$$\lim_{n \to +\infty} a_n = \sup\{a_n; n \in \mathbb{N}\}.$$

A partir disso, determine $\sup\{1-\frac{1}{n}; n\in\mathbb{N}\}$, justificando sua resposta.

3. (1,0) Enuncie e prove o Teorema do Sanduíche para funções reais, de uma variável real. A seguir, utilize este teorema para provar que se $f: \mathbb{R} \to \mathbb{R}$ é tal que

$$|f(x) - f(y)| \le |x - y|^2, \ \forall \ x, y \in \mathbb{R},$$

então f é constante.

4. (1,0) Sejam $a,b\in\mathbb{R}^+,\,p\in(1,+\infty)$ e $q\in\mathbb{R},$ tal que $\frac{1}{p}+\frac{1}{q}=1.$ Prove que

$$ab \le \frac{a^p}{p} + \frac{b^q}{q}.$$

Sugestão: Utilize a função auxiliar $f:[0,+\infty)\to\mathbb{R}$, dada por $f(x)=\frac{x^p}{p}+\frac{1}{q}-x$.

5. (1,0) Resolva cada um dos itens abaixo, relacionados à conceitos topológicos:

- (a) (0,3) Defina conjunto compacto em \mathbb{R} e prove que se $f: K \to \mathbb{R}$ é contínua, com $K \subset \mathbb{R}$ compacto, então f(K) também é compacto;
- (b) (0,2) O conjunto $S = \{x \in [0,1]; e^x \cos \sqrt{x^2 + 1} \le 1\}$ é compacto? Justifique sua resposta.
- (c) (0,3) Prove que se $K \subset \mathbb{R}$ é compacto, então toda função contínua $f: K \to \mathbb{R}$ possui um valor máximo e um valor mínimo.
- (d) (0,2) Se S é o conjunto dado no item (b), então mostre que a função $f: S \to \mathbb{R}$, definida por $f(x) = arctg(x) + x^3$, para todo $x \in S$, é limitada.

Álgebra Linear

Notações

- Nesta prova, todos os espaços vetoriais são reais, isto é, os escalares são tomados em R;
- Im(T) é a imagem e Ker(T) é o núcleo de uma transformação linear T;
- dimV denota a dimensão de um espaço vetorial V;
- p' representa a derivada de p.

Questões

6. (1,0) Sabe-se que $V = \{(x,y) \in \mathbb{R}^2; x > 0 \text{ e } y > 0\}$ é um espaço vetorial real, munido das seguintes operações: $+: V \times V \to V \text{ e } \cdot : \mathbb{R} \times V \to V$, definidas, respectivamente, por

$$(x_1, y_1) + (x_2, y_2) = (x_1 \cdot x_2, y_1 \cdot y_2) \in \alpha \cdot (x_1, y_1) = (x_1^{\alpha}, y_1^{\alpha}),$$

para quaisquer $(x_1, x_2), (y_1, y_2) \in V$ e $\alpha \in \mathbb{R}$.

- (a) (0,25) Prove a propriedade distributiva da multiplicação por escalar pela soma. Além disso, determine o elemento neutro da soma e o simétrico de um vetor $(x,y) \in V$;
- (b) (0,25) Exiba uma base de V e dê sua dimensão;
- (c) (0.25) Determine as coordenadas do vetor v = (3,5), com relação à base obtida no item anterior;
- (d) (0,25) O conjunto $U = \{(1,2^x); x \in \mathbb{R}\}$ é um subespaço vetorial de V? Justifique.
 - 7. (1,0) Sejam V um espaço vetorial de dimensão finita e $T:V\to V$ um operador linear. Classifique como verdadeira (V) ou falsa (F) cada uma das afirmações abaixo. Prove as verdadeiras e dê contra-exemplo para as falsas.
- () (0,25) A união de dois conjuntos linearmente independentes de um espaço vetorial V é ainda um conjunto linearmente independente;
- () (0,25) O vetor w = (2,3,-1) pertence as subspaço gerado por u = (1,0,0) e v = (1,1,0);
- () (0,25) Para todo operador linear $T:V\to V,$ temos $V=Ker(T)\oplus Im(T);$
- () (0,25) Se a transformação linear $T: \mathbb{R}^m \to \mathbb{R}^n$ é injetiva, então dim Im(T) = m.
- 8. (1,0) Sejam V um espaço vetorial real e W_1, W_2 subespaços vetoriais de V.
- (a) (0,5) Prove que $V=W_1\oplus W_2$ se, e somente se, todo vetor $v\in V$ se escreve de modo único como $v=w_1+w_2$, com $w_1\in W_1$ e $w_2\in W_2$;
- (a) (0,5) Seja V o espaço vetorial real das matrizes reais $n \times n$. Exiba subespaços vetoriais W_1 e W_2 de V, tais que $V = W_1 \oplus W_2$.
- 9. (1,0) Seja \mathcal{P}_5 o espaço vetorial real dos polinômios de grau menor do que, ou igual a 5, com coeficientes em \mathbb{R} . Se $T: \mathcal{P}_5 \to \mathcal{P}_5$ é definida por

$$T(p(x)) = 3p'(x) + 5p(x), \ \forall \ p(x) \in \mathcal{P}_5,$$

então mostre que T é um isomorfismo.

10. (1,0) Seja $T: \mathbb{R}^2 \to \mathbb{R}^2$ uma transformação linear, com T(1,-1)=(2,3) e T(2,1)=(3,2). Prove que T é diagonalizável.