Universidade Federal de Santa Maria Centro de Ciências Naturais e Exatas Pós-Graduação em Matemática - Mestrado em Matemática

Prova de Seleção Escrita Mestrado em Matemática - 2011/1

Orientações:

- Resolver as questões nas folhas indicadas.
- Pode-se utilizar lápis na resolução das questões.
- Evitar rasuras e resolver claramente.
- A duração da prova é de no máximo 5 horas.
- A prova deve ser resolvida individualmente e sem consulta.

Notação: \mathbb{Q} conjunto dos números racionais, \mathbb{R} conjunto dos números reais.

Valor da questão 1: 2,5 pontos

1. Seja $T_A: \mathbb{R}^n \to \mathbb{R}^n$ definida por $T_A(X) = AX$ onde A é uma matriz quadrada de ordem n com $det A \neq 0$. Defina em \mathbb{R}^n o produto interno canônico:

$$\langle X, Y \rangle = Y^T X.$$

- (a) (0,4) Prove que T_A é linear.
- (b) (0,4) Determine o núcleo e a imagem de T_A .
- (c) (0,4) T_A é inversível? Justifique.
- (d) (0,5) Que condições devemos impor a matriz A para que $||T_A(X)|| = ||X||$, onde ||.|| é a norma euclidiana.
- (e) (0,8) Sejam $\lambda_1,\lambda_2,...,\lambda_n$ autovalores reais e distintos de A. Prove que a solução do sistema AX = B é

$$X = \sum_{i=1}^{n} \frac{\langle B, v_i \rangle}{\lambda_i \langle v_i, v_i \rangle} v_i .$$

Valor da questão 2: 2,5 pontos

2. Seja A uma matriz real de ordem $m \times n$, e B a matriz em blocos dada por

$$B = \left(\begin{array}{cc} 0_m & A \\ A^T & 0_n \end{array}\right),$$

onde 0_m indica a matriz nula de ordem m, 0_n indica a matriz nula de ordem n e A^T é a matriz transposta de A. Seja $v = (v_1, v_2)^T$ um autovetor de B correspondente ao autovalor λ , sendo v_1 e v_2 vetores com m e n coordenadas, respectivamente.

- (a) (0,5) Mostre que $-\lambda$ também é autovalor de B.
- (b) (0,5) Mostre que λ^2 é autovalor de A^TA e de AA^T .
- (c) (0,5) Mostre que B é uma matriz simétrica.
- (d) (1,0) Se A é a matriz identidade de ordem 2, $(A = I, 2 \times 2)$ determine os autovalores e autovetores de B, usando os itens acima.

Valor da questão 3: 1,0 pontos

3. Faça o gráfico da função $y = \frac{x}{\sqrt{x^2+1}}$. Prove que sua imagem é o intervalo |y| < 1. Prove que ela é injetiva e calcule sua inversa.

Valor da questão 4: 1,0 pontos

- 4. Considere o conjunto $X = \{1 \frac{1}{3n^2}; n \in \mathbb{N}\}.$
 - (a) (0,5) Mostre que sup X=1.
 - (b) (0,25) Mostre que a sequência $x_n = 1 \frac{1}{3n^2}$ converge para 1.
 - (c) (0,25) O conjunto X é compacto em \mathbb{R} ? Justifique.

Valor da questão 5: 0,5 pontos

5. Prove que toda coleção de abertos dois a dois disjuntos e não vazios de \mathbb{R} é enumerável.

Valor da questão 6: 1,5 pontos

- Identifique se as afirmações abaixo são verdadeiras ou falsas, justificando sua resposta:
 - (a) (0,3) Toda sequência monótona limitada é convergente.
 - (b) (0,3) Se $\sum_{n=1}^{+\infty} |x_n|$ converge então $\sum_{n=1}^{+\infty} x_n$ converge.
 - (c) (0,3) Se a função $f:[a,b] \to \mathbb{R}$ é derivável em um ponto $c \in (a,b)$, e f'(c) = 0 então f tem um extremo relativo em c.
 - (d) (0,3) Se $X \subset \mathbb{Q}$ e X é limitado, então existe $b \in \mathbb{Q}$ tal que $b = \sup X$.
 - (e) (0,3) Toda função integrável à Riemann em [a,b] possui primitiva em [a,b].

Valor da questão 7: 1,0 pontos

7. Seja $f:[a,b] \to \mathbb{R}$ derivável em (a,b) e contínua em [a,b], com f(a)=f(b). Mostre que existe um $c \in (a,b)$ tal que f(c) f'(c)=0.