Universidade Federal de Santa Maria Centro de Ciências Naturais e Exatas Pós-Graduação em Matemática - Mestrado em Matemática

Seleção Escrita - Prova 1 - Curso de Verão Mestrado em Matemática - 2011/1

Orientações:

- Resolver as questões nas folhas indicadas.
- Pode-se utilizar lápis na resolução das questões.
- Evitar rasuras e resolver claramente.
- A duração da prova é de no máximo 3 horas.
- A prova deve ser resolvida individualmente e sem consulta.

Valor da questão 1: 1,0 pontos

1. Mostre que o conjunto $\mathbb Q$ dos números racionais é denso em $\mathbb R$.

Valor da questão 2: 2,0 pontos

- 2. Considere $f, g: X \to \mathbb{R}$ definidas em $X \subset \mathbb{R}$, com $X \neq \emptyset$.
 - (a) Mostre que se f e g são não-negativas e limitadas superiormente então fg: $X \to \mathbb{R}$ é limitada superiormente e $\sup(fg) \le \sup f \sup g$.
 - (b) Dê exemplos mostrando que pode ocorrer $\sup(fg) < \sup f \sup g$.

Valor da questão 3: 1,0 pontos

3. Seja (a_n) a sequência definida indutivamente por:

$$a_1 = \sqrt{2} e \ a_{n+1} = \sqrt{2 + a_n}$$
, para $n > 1$.

- (a) Mostre, por indução, que $a_n < 2, \forall n \in \mathbb{N}$.
- (b) Mostre que (a_n) é crescente (sugestão: verifique que $a_{n+1}^2 a_n^2 = (2 a_n)(1 + a_n) > 0$, para $n \ge 1$, então $a_{n+1} > a_n$).
- (c) Conclua, pelos itens anteriores, que (a_n) é convergente e calcule seu limite.

Valor da questão 4: 2,0 pontos

4. Dizemos que (a_n) é uma **sequência de Cauchy** quando para todo $\epsilon > 0$ existe $n_0 \in \mathbb{N}$ tal que

$$m, n > n_0 \Rightarrow |a_m - a_n| < \epsilon$$
.

- (a) Mostre que toda sequência convergente é de Cauchy.
- (b) Mostre que se uma sequência de Cauchy tem uma subsequência convergente então a sequência é convergente.
- (c) Mostre que toda sequência de Cauchy é limitada.
- (d) Conclua que uma sequência é convergente se, e somente se, a sequência é de Cauchy.

Valor da questão 5: 2,0 pontos

- 5. (a) Considere duas sequências de números reais não-negativos (a_n) e (b_n) tais que $\lim_{n\to\infty}\frac{a_n}{b_n}=c$ para algum c>0. Mostre que $\sum a_n$ converge se, e somente se, $\sum b_n$ converge.
 - (b) Use o resultado anterior para estudar a convergência das séries $\sum \frac{2n+1}{(n+1)^2}$ e $\sum \frac{1}{2^n-1}$.

Valor da questão 6: 2,0 pontos

- 6. (a) Considere o conjunto $Y=(1,2)\cup\{0,3,4\}\cup\left\{\frac{1}{n};n\in\mathbb{N}\right\}$. Encontre int $Y\in\overline{Y}$. Além disso diga se Y é aberto, fechado ou nem aberto nem fechado. Justifique.
 - (b) Prove que se $K \subset \mathbb{R}$ é compacto então o conjunto

$$S = \{x + y; \ x, y \in K\}$$

também é compacto.

(c) Dados $A,B\subset\mathbb{R}$ mostre que $\overline{A\cap B}\subset\overline{A}\cap\overline{B}$. Dê um exemplo em que $\overline{A\cap B}\neq\overline{A}\cap\overline{B}$.