Prova de Seleção Escrita Mestrado em Matemática - 2015/2

Orientações:

- Resolver as questões nas folhas indicadas.
- Pode-se utilizar lápis na resolução das questões.
- A duração da prova é de no máximo 5 horas.
- A prova deve ser resolvida individualmente e sem consulta.

Notações:

- R denotará o conjunto dos números reais,
- \bullet < X > denotará o subespaço gerado por X,
- P_2 denotará o espaço vetorial dos polinômios de grau menor ou igual a 2.
- 1. (1,0) Seja $W=< v_1, v_2>$ o subespaço do \mathbb{R}^3 gerado pelos vetores $v_1=(1,1,1)$ e $v_2=(0,-1,1)$. Em cada item, avalie se a afirmação é verdadeira ou falsa, justificando **detalhadamente** sua resposta:
 - (a) Se $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ são as coordenadas do vetor $u \in W$ na base $\{v_1, v_2\}$, então u = (1, -1, 3).
 - (b) O conjunto $\{v_1 + v_2, v_1 v_2\}$ constitui uma base para W.
 - (c) Existe um vetor v_3 do \mathbb{R}^3 tal que $v_3 \notin W$ e $\{v_1, v_2, v_3\}$ é uma base do \mathbb{R}^3 .
 - (d) Existe ao menos uma transformação linear sobrejetora de W sobre o \mathbb{R}^3 .
 - (e) Existe um operador linear sobre o \mathbb{R}^3 cujo núcleo é W.
- 2. (1,0) Para cada $\alpha \in \mathbb{R}$, seja $A_{\alpha} = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & \alpha \end{bmatrix}$.
 - (a) Encontre os autovalores de A_{α} e respectivas multiplicidades algébricas.
 - (b) Determine uma base (de autovetores) para cada autoespaço V_{λ} de A_{α} .
 - (c) Prove que A_{α} é diagonalizável para qualquer α , e encontre uma matriz mudança de base S_{α} e a matriz diagonal D_{α} tal que $A_{\alpha} = S_{\alpha}^{-1} D_{\alpha} S_{\alpha}$.
- 3. (**1**,**0**)
 - (a) Verifique que $\beta = \{1 + t, -1 + t, t^2\}$ é uma base de P_2 .
 - (b) Verifique que $T: P_2 \to P_2$ definido por $T(f(t)) = \frac{df(t)}{dt} f(t)$ é um operador linear.
 - (c) Encontre a matriz que representa T com relação à base β .
 - (d) Utilize a matriz encontrada no item anterior para achar a solução de $T\left(f(t)\right)=3-3t+2t^{2}$ em $<\beta>$.
- 4. (2,0) Disserte sobre o tema **Teorema do Núcleo e Imagem**. Nessa questão sugerimos que sejam abordados os seguintes tópicos:
 - Transformações Lineares,
 - Injetividade, sobrejetividade e isomorfismo,
 - Teorema do Núcleo e Imagem.

- 5. (1,0) Classifique cada uma das sentenças abaixo como verdadeira (V) ou falsa (F), provando as verdadeiras e fornecendo um contra-exemplo para as falsas.
 - (a) () Se (x_n) e (y_n) são sequências convergentes, com $x_n < y_n$, para todo $n \in \mathbb{N}$, então $\lim x_n < \lim y_n$.
 - (b) () Se $\lim x_n = a = \lim y_n$, onde $a \in \mathbb{R}$, e $x_n \le z_n \le y_n$, para todo $n \in \mathbb{N}$, então $\lim z_n = a$.
 - (c) () Se (x_n) é uma sequência convergente, então (x_n) é de Cauchy.
 - (d) () Se a série $\sum b_n$ é convergente e $a_n \leq b_n$, para todo $n \in \mathbb{N}$, então a série $\sum a_n$ também converge.
 - (e) () Se $a_{n+1} \ge a_n \ge 0$, para todo $n \in \mathbb{N}$, e $\sum a_n$ é convergente, então $\lim na_n = 0$.
- 6. (**1**,**0**)
 - (a) Sejam $I \subset \mathbb{R}$, a um ponto de acumulação de I e $f: I \to \mathbb{R}$ uma função. Prove que, se $L \in \mathbb{R} \cup \{-\infty, \infty\}$,

$$\lim_{x\to a} f(x) = L \Leftrightarrow \forall (x_n) \subset I$$
, com $\lim x_n = a$, tem-se $\lim f(x_n) = L$.

(b) Seja $f : \mathbb{R} \to \mathbb{R}$, definida por f(x) = n, onde $n \in \mathbb{Z}$ e $n \le x < n + 1$. Prove que, para cada $n \in \mathbb{Z}$,

$$\lim_{x \to n^{+}} f(x) = n \text{ e } \lim_{x \to n^{-}} f(x) = n - 1.$$

- 7. (1,0) Seja $p: \mathbb{R} \to \mathbb{R}$ uma função definida por $p(x) = x^3 + ax^2 + bx + c$, onde $a, b, c \in \mathbb{R}$. Prove que p é uma bijeção com inversa contínua se, e somente se, $a^2 < 3b$.
- 8. (2,0) Disserte sobre o tema Continuidade de funções reais de uma variável real. Nessa questão sugerimos que sejam abordados os seguintes tópicos:
 - Definição e exemplos,
 - Propriedades das funções contínuas,
 - Teorema do Valor Intermediário e Aplicações,
 - Continuidade Uniforme,