
 1

8086 Assembler Tutorial Prof. Emerson Giovani Carati, Dr. Eng.

8086 Assembler Tutorial for Beginners
(Part 1)

This tutorial is intended for those who are not familiar with

assembler at all, or have a very distant idea about it. Of course if you
have knowledge of some other programming language (Basic, C/C++,
Pascal...) that may help you a lot.

But even if you are familiar with assembler, it is still a good idea to
look through this document in order to study emu8086 syntax.

It is assumed that you have some knowledge about number
representation (HEX/BIN), if not it is highly recommended to study
Numbering Systems Tutorial before you proceed.

What is an assembly language?

Assembly language is a low level programming language. You need
to get some knowledge about computer structure in order to understand
anything. The simple computer model as I see it:

The system bus (shown in yellow) connects the various

components of a computer.
The CPU is the heart of the computer, most of computations occur

inside the CPU.
RAM is a place to where the programs are loaded in order to be

executed.

 2

8086 Assembler Tutorial Prof. Emerson Giovani Carati, Dr. Eng.

Inside the CPU

GENERAL PURPOSE REGISTERS

8086 CPU has 8 general purpose registers, each register has its own
name:

• AX - the accumulator register (divided into AH / AL).
• BX - the base address register (divided into BH / BL).
• CX - the count register (divided into CH / CL).
• DX - the data register (divided into DH / DL).
• SI - source index register.
• DI - destination index register.
• BP - base pointer.
• SP - stack pointer.

Despite the name of a register, it's the programmer who determines

the usage for each general purpose register. The main purpose of a
register is to keep a number (variable). The size of the above registers is
16 bit, it's something like: 0011000000111001b (in binary form), or
12345 in decimal (human) form.

4 general purpose registers (AX, BX, CX, DX) are made of two separate
8 bit registers, for example if AX= 0011000000111001b, then
AH=00110000b and AL=00111001b. Therefore, when you modify any
of the 8 bit registers 16 bit register is also updated, and vice-versa. The
same is for other 3 registers, "H" is for high and "L" is for low part.

Because registers are located inside the CPU, they are much faster
than memory. Accessing a memory location requires the use of a system
bus, so it takes much longer. Accessing data in a register usually takes no
time. Therefore, you should try to keep variables in the registers. Register
sets are very small and most registers have special purposes which limit
their use as variables, but they are still an excellent place to store
temporary data of calculations.

 3

8086 Assembler Tutorial Prof. Emerson Giovani Carati, Dr. Eng.

SEGMENT REGISTERS

• CS - points at the segment containing the current program.
• DS - generally points at segment where variables are defined.
• ES - extra segment register, it's up to a coder to define its usage.
• SS - points at the segment containing the stack.

Although it is possible to store any data in the segment registers, this
is never a good idea. The segment registers have a very special purpose -
pointing at accessible blocks of memory.

Segment registers work together with general purpose register to
access any memory value. For example if we would like to access memory
at the physical address 12345h (hexadecimal), we should set the DS =
1230h and SI = 0045h. This is good, since this way we can access much
more memory than with a single register that is limited to 16 bit values.

CPU makes a calculation of physical address by multiplying the
segment register by 10h and adding general purpose register to it (1230h
* 10h + 45h = 12345h):

The address formed with 2 registers is called an effective address.
By default BX, SI and DI registers work with DS segment register;
BP and SP work with SS segment register.
Other general purpose registers cannot form an effective address!
Also, although BX can form an effective address, BH and BL cannot!

SPECIAL PURPOSE REGISTERS

• IP - the instruction pointer.
• Flags Register - determines the current state of the processor.

IP register always works together with CS segment register and it
points to currently executing instruction.

Flags Register is modified automatically by CPU after mathematical
operations, this allows to determine the type of the result, and to
determine conditions to transfer control to other parts of the program.
Generally you cannot access these registers directly.

 4

8086 Assembler Tutorial Prof. Emerson Giovani Carati, Dr. Eng.

(Part 2)

Memory Access

To access memory we can use these four registers: BX, SI, DI, BP.
Combining these registers inside [] symbols, we can get different
memory locations. These combinations are supported (addressing
modes):

[BX + SI]
[BX + DI]
[BP + SI]
[BP + DI]

[SI]
[DI]
d16 (variable offset only)
[BX]

[BX + SI] + d8
[BX + DI] + d8
[BP + SI] + d8
[BP + DI] + d8

[SI] + d8
[DI] + d8
[BP] + d8
[BX] + d8

[BX + SI] + d16
[BX + DI] + d16
[BP + SI] + d16
[BP + DI] + d16

[SI] + d16
[DI] + d16
[BP] + d16
[BX] + d16

d8 - stays for 8 bit displacement.

d16 - stays for 16 bit displacement.

�� Displacement can be a immediate value or offset of a variable, or
even both. It's up to compiler to calculate a single immediate
value.

�� Displacement can be inside or outside of [] symbols, compiler
generates the same machine code for both ways.

�� Displacement is a signed value, so it can be both positive or
negative.

Generally the compiler takes care about difference between d8 and

d16, and generates the required machine code.

For example, let's assume that DS = 100, BX = 30, SI = 70.
The following addressing mode: [BX + SI] + 25
is calculated by processor to this physical address: 100 * 16 + 30 + 70
+ 25 = 1725.

By default DS segment register is used for all modes except those
with BP register, for these SS segment register is used. There is an easy
way to remember all those possible combinations using this chart:

 5

8086 Assembler Tutorial Prof. Emerson Giovani Carati, Dr. Eng.

You can form all valid combinations by taking only one item from
each column or skipping the column by not taking anything from it. As you
see BX and BP never go together. SI and DI also don't go together. Here
is an example of a valid addressing mode: [BX+5].

The value in segment register (CS, DS, SS, ES) is called a

"segment", and the value in purpose register (BX, SI, DI, BP) is called an
"offset". When DS contains value 1234h and SI contains the value
7890h it can be also recorded as 1234:7890. The physical address will
be 1234h * 10h + 7890h = 19BD0h.

In order to say the compiler about data type, these prefixes should

be used:
BYTE PTR - for byte.
WORD PTR - for word (two bytes).

For example:

 BYTE PTR [BX] ; byte access.
 or
 WORD PTR [BX] ; word access.

MicroAsm supports shorter prefixes as well:
b. - for BYTE PTR
w. - for WORD PTR
Sometimes compiler can calculate the data type automatically, but

you may not and should not rely on that when one of the operands is an
immediate value.

MOV instruction

• Copies the second operand (source) to the first operand
(destination).

• The source operand can be an immediate value, general-purpose
register or memory location.

• The destination register can be a general-purpose register, or
memory location.

• Both operands must be the same size, which can be a byte or a
word.

 6

8086 Assembler Tutorial Prof. Emerson Giovani Carati, Dr. Eng.

These types of operands are supported:

MOV REG, memory
MOV memory, REG
MOV REG, REG
MOV memory, immediate
MOV REG, immediate

REG: AX, BX, CX, DX, AH, AL, BL, BH, CH, CL, DH, DL, DI, SI, BP, SP.

memory: [BX], [BX+SI+7], variable, etc...

immediate: 5, -24, 3Fh, 10001101b, etc...

For segment registers only these types of MOV are supported:

MOV SREG, memory
MOV memory, SREG
MOV REG, SREG
MOV SREG, REG

SREG: DS, ES, SS, and only as second operand: CS.

REG: AX, BX, CX, DX, AH, AL, BL, BH, CH, CL, DH, DL, DI, SI, BP, SP.

memory: [BX], [BX+SI+7], variable, etc...

The MOV instruction cannot be used to set the value of the CS and
IP registers.

Here is a short program that demonstrates the use of MOV instruction:

#MAKE_COM# ; instruct compiler to make COM file.
ORG 100h ; directive required for a COM program.
MOV AX, 0B800h ; set AX to hexadecimal value of B800h.
MOV DS, AX ; copy value of AX to DS.
MOV CL, 'A' ; set CL to ASCII code of 'A', it is 41h.
MOV CH, 01011111b ; set CH to binary value.
MOV BX, 15Eh ; set BX to 15Eh.
MOV [BX], CX ; copy contents of CX to memory at B800:015E
RET ; returns to operating system.

You can copy & paste the above program to MicroAsm code editor, and
press [Compile] button (or press F5 key on your keyboard).

 7

8086 Assembler Tutorial Prof. Emerson Giovani Carati, Dr. Eng.

How to do copy & paste:

1. Select the above text using mouse, click before the text and drag it
down until everything is selected.

2. Press Ctrl + C combination to copy.

3. Go to MicroAsm text editor and press Ctrl + V combination to paste.

As you may guess, ";" is used for comments, anything after ";" symbol
is ignored by compiler.

You should see something like that when program finishes:

(this is how it looks in emu8086 microprosessor emulator).

Actually the above program writes directly to video memory, so you
may see that MOV is a very powerful instruction.

 8

8086 Assembler Tutorial Prof. Emerson Giovani Carati, Dr. Eng.

(Part 3)

Variables

Variable is a memory location. For a programmer it is much easier
to have some value be kept in a variable named "var1" then at the
address 5A73:235B, especially when you have 10 or more variables.

Our compiler supports two types of variables: BYTE and WORD.

Syntax for a variable declaration:

name DB value

name DW value

DB - stays for Define Byte.
DW - stays for Define Word.

name - can be any letter or digit combination, though it should start with a letter. It's
possible to declare unnamed variables by not specifying the name (this variable will have
an address but no name).

value - can be any numeric value in any supported numbering system (hexadecimal,
binary, or decimal), or "?" symbol for variables that are not initialized.

As you probably know from part 2 of this tutorial, MOV instruction is used
to copy values from source to destination.
Let's see another example with MOV instruction:

#MAKE_COM#
ORG 100h

MOV AL, var1
MOV BX, var2

RET ; stops the program.

VAR1 DB 7
var2 DW 1234h

Copy the above code to MicroAsm source editor, and press F5 key
to compile it. Then open the executable in any disassembler (emu8086
or any other).

Compiler is not case sensitive, so "VAR1" and "var1" refer to the
same variable.

 9

8086 Assembler Tutorial Prof. Emerson Giovani Carati, Dr. Eng.

The offset of VAR1 is 0108h. The offset of var2 is 0109h, this
variable is a WORD so it occupies 2 BYTES. It is assumed that low byte is
stored at lower address, so 34h is located before 12h.

You can see that there are some other instructions after the RET
instruction, this happens because disassembler has no idea about where
the data starts, it just processes the values in memory and it understands
them as valid 8086 instructions (we will learn them later).

You can even write the same program using DB directive only:

#MAKE_COM#
ORG 100h

DB 0A0h
DB 08h
DB 01h

DB 8Bh
DB 1Eh
DB 09h
DB 01h

DB 0C3h

DB 7

DB 34h
DB 12h

Copy the above code to MicroAsm text editor, and press F5 key to
compile and load it in the emulator. You should get the same
disassembled code, and the same functionality!

As you may guess, the compiler just converts the program source to
the set of bytes, this set is called machine code, processor understands
the machine code and executes it.

ORG 100h is a compiler directive (it says to compiler how to handle
the source code). This directive is very important when you work with
variables. It says to compiler that the executable file will be loaded at the
offset of 100h (256 bytes), so compiler should calculate the correct
address for all variables when it replaces the variable names with their
offsets. Directives are never converted to any real machine code.

Why executable file is loaded at offset of 100h? Operating system
keeps some data about the program in the first 256 bytes of the CS (code
segment), such as command line parameters and etc.
Though this is true for COM files only, EXE files are loaded at offset of
0000, and generally use special segment for variables. Maybe we'll talk
more about EXE files later.

 10

8086 Assembler Tutorial Prof. Emerson Giovani Carati, Dr. Eng.

Arrays

Arrays can be seen as chains of variables. A text string is an
example of a byte array, each character is presented as an ASCII code
value (0..255).

Here are some array definition examples:

a DB 48h, 65h, 6Ch, 6Ch, 6Fh, 00h
b DB 'Hello', 0

b is an exact copy of the a array, when compiler sees a string inside
quotes it automatically converts it to set of bytes. This chart shows a part
of the memory where these arrays are declared:

You can access the value of any element in array using square
brackets, for example:

MOV AL, a[3]

You can also use any of the memory index registers BX, SI, DI, BP,
for example:

MOV SI, 3

MOV AL, a[SI]

If you need to declare a large array you can use DUP operator.

The syntax for DUP:

number DUP (value(s))

number - number of duplicate to make (any constant value).

value - expression that DUP will duplicate.

for example:

c DB 5 DUP(9)

is an alternative way of declaring:

c DB 9, 9, 9, 9, 9

 11

8086 Assembler Tutorial Prof. Emerson Giovani Carati, Dr. Eng.

one more example:

d DB 5 DUP(1, 2)

is an alternative way of declaring:

d DB 1, 2, 1, 2, 1, 2, 1, 2, 1, 2

Of course, you can use DW instead of DB if it's required to keep
values larger then 255, or smaller then -128. DW cannot be used to
declare strings!

The expansion of DUP operand should not be over 1020 characters!
(the expansion of last example is 13 chars), if you need to declare huge
array divide declaration it in two lines (you will get a single huge array in
the memory).

Getting the Address of a Variable

There is LEA (Load Effective Address) instruction and alternative
OFFSET operator. Both OFFSET and LEA can be used to get the offset
address of the variable. LEA is more powerful because it also allows you
to get the address of an indexed variables. Getting the address of the
variable can be very useful in some situations, for example when you
need to pass parameters to a procedure.

Reminder:
In order to say the compiler about data type,
these prefixes should be used:

BYTE PTR - for byte.
WORD PTR - for word (two bytes).

For example:

BYTE PTR [BX] ; byte access.
 or
WORD PTR [BX] ; word access.
MicroAsm supports shorter prefixes as well:

b. - for BYTE PTR
w. - for WORD PTR

sometimes compiler can calculate the data type automatically, but you may not and should not rely on that when one
of the operands is an immediate value.

 12

8086 Assembler Tutorial Prof. Emerson Giovani Carati, Dr. Eng.

Here is first example:

ORG 100h

MOV AL, VAR1 ; check value of VAR1 by moving it to AL.

LEA BX, VAR1 ; get address of VAR1 in BX.

MOV BYTE PTR [BX], 44h ; modify the contents of VAR1.

MOV AL, VAR1 ; check value of VAR1 by moving it to AL.

RET

VAR1 DB 22h

END

Here is another example, that uses OFFSET instead of LEA:

ORG 100h

MOV AL, VAR1 ; check value of VAR1 by moving it to AL.

MOV BX, OFFSET VAR1 ; get address of VAR1 in BX.

MOV BYTE PTR [BX], 44h ; modify the contents of VAR1.

MOV AL, VAR1 ; check value of VAR1 by moving it to AL.

RET

VAR1 DB 22h

END

Both examples have the same functionality. These lines:

LEA BX, VAR1
MOV BX, OFFSET VAR1

are even compiled into the same machine code:

 MOV BX, num

num is a 16 bit value of the variable offset.

Please note that only these registers can be used inside square
brackets (as memory pointers): BX, SI, DI, BP! (see previous part of the
tutorial).

 13

8086 Assembler Tutorial Prof. Emerson Giovani Carati, Dr. Eng.

Constants

Constants are just like variables, but they exist only until your
program is compiled (assembled). After definition of a constant its value
cannot be changed. To define constants EQU directive is used:

name EQU < any expression >

For example:

k EQU 5

MOV AX, k

The above example is functionally identical to code:

MOV AX, 5

Read the following section only if you are using emu8086 - 8086

microprocessor emulator:
You can view variables while your program executes by selecting

"Variables" from the "View" menu of emulator.

To view arrays you should click on a variable andset Elements
property to array size. In assembly language there are not strict data
types, so any variable can be presented as an array.

Variable can be viewed in any numbering system:

• HEX - hexadecimal (base 16).
• BIN - binary (base 2).
• OCT - octal (base 8).
• SIGNED - signed decimal (base 10).
• UNSIGNED - unsigned decimal (base 10).
• CHAR - ASCII char code (there are 256 symbols, some symbols are

invisible).

 14

8086 Assembler Tutorial Prof. Emerson Giovani Carati, Dr. Eng.

You can edit a variable's value when your program is running,
simply double click it, or select it and click Edit button.

It is possible to enter numbers in any system, hexadecimal numbers
should have "h" suffix, binary "b" suffix, octal "o" suffix, decimal numbers
require no suffix. String can be entered this way:
'hello world', 0 (this string is zero terminated).

Arrays may be entered this way:

1, 2, 3, 4, 5 (the array can be array of bytes or words, it depends
whether BYTE or WORD is selected for edited variable).

Expressions are automatically converted, for example: when this
expression is entered:

5 + 2 it will be converted to 7 etc...

 15

8086 Assembler Tutorial Prof. Emerson Giovani Carati, Dr. Eng.

(Part 4)

Interrupts

Interrupts can be seen as a number of functions. These functions
make the programming much easier, instead of writing a code to print a
character you can simply call the interrupt and it will do everything for
you. There are also interrupt functions that work with disk drive and other
hardware. We call such functions software interrupts.

Interrupts are also triggered by different hardware, these are called
hardware interrupts. Currently we are interested in software
interrupts only.

To make a software interrupt there is an INT instruction, it has
very simple syntax:

INT value
where value can be a number between 0 to 255 (or 0 to 0FFh), generally
we will use hexadecimal numbers.

You may think that there are only 256 functions, but that is not
correct. Each interrupt may have sub-functions.

To specify a sub-function AH register should be set before calling
interrupt. Each interrupt may have up to 256 sub-functions (so we get
256 * 256 = 65536 functions). In general AH register is used, but
sometimes other registers maybe in use. Generally other registers are
used to pass parameters and data to sub-function. The following example
uses INT 10h sub-function 0Eh to type a "Hello!" message. This functions
displays a character on the screen, advancing the cursor and scrolling the
screen as necessary.

#MAKE_COM# ; instruct compiler to make COM file.
ORG 100h

; The sub-function that we are using
; does not modify the AH register on
; return, so we may set it only once.

MOV AH, 0Eh ; select sub-function.

; INT 10h / 0Eh sub-function
; receives an ASCII code of the
; character that will be printed
; in AL register.

MOV AL, 'H' ; ASCII code: 72
INT 10h ; print it!

MOV AL, 'e' ; ASCII code: 101
INT 10h ; print it!

 16

8086 Assembler Tutorial Prof. Emerson Giovani Carati, Dr. Eng.

MOV AL, 'l' ; ASCII code: 108
INT 10h ; print it!

MOV AL, 'l' ; ASCII code: 108
INT 10h ; print it!

MOV AL, 'o' ; ASCII code: 111
INT 10h ; print it!

MOV AL, '!' ; ASCII code: 33
INT 10h ; print it!

RET ; returns to operating system.

Copy & paste the above program to source code editor, and press
[Compile] button. Run it!

See list of basic interrupts for information about other interrupts.

 17

8086 Assembler Tutorial Prof. Emerson Giovani Carati, Dr. Eng.

(Part 5)

Library of common functions - emu8086.inc

To make programming easier there are some common functions that
can be included in your program. To make your program use functions
defined in other file you should use the INCLUDE directive followed by a
file name. Compiler automatically searches for the file in the same folder
where the source file is located, and if it cannot find the file there - it
searches in Inc folder.

Currently you may not be able to fully understand the contents of
the emu8086.inc (located in Inc folder), but it's OK, since you only need
to understand what it can do.

To use any of the functions in emu8086.inc you should have the
following line in the beginning of your source file:

include 'emu8086.inc'

emu8086.inc defines the following macros:

• PUTC char - macro with 1 parameter, prints out an ASCII char at
current cursor position.

• GOTOXY col, row - macro with 2 parameters, sets cursor position.

• PRINT string - macro with 1 parameter, prints out a string.

• PRINTN string - macro with 1 parameter, prints out a string. The
same as PRINT but automatically adds "carriage return" at the end
of the string.

• CURSOROFF - turns off the text cursor.

• CURSORON - turns on the text cursor.

To use any of the above macros simply type its name somewhere in
your code, and if required parameters, for example:

include emu8086.inc

ORG 100h

PRINT 'Hello World!'

GOTOXY 10, 5

PUTC 65 ; 65 - is an ASCII code for 'A'
PUTC 'B'

RET ; return to operating system.
END ; directive to stop the compiler.

 18

8086 Assembler Tutorial Prof. Emerson Giovani Carati, Dr. Eng.

When compiler process your source code it searches the
emu8086.inc file for declarations of the macros and replaces the macro
names with real code. Generally macros are relatively small parts of code,
frequent use of a macro may make your executable too big (procedures
are better for size optimization).

emu8086.inc also defines the following procedures:

• PRINT_STRING - procedure to print a null terminated string at
current cursor position, receives address of string in DS:SI register.
To use it declare: DEFINE_PRINT_STRING before END directive.

• PTHIS - procedure to print a null terminated string at current cursor
position (just as PRINT_STRING), but receives address of string
from Stack. The ZERO TERMINATED string should be defined just
after the CALL instruction. For example:

CALL PTHIS
db 'Hello World!', 0

To use it declare: DEFINE_PTHIS before END directive.

• GET_STRING - procedure to get a null terminated string from a
user, the received string is written to buffer at DS:DI, buffer size
should be in DX. Procedure stops the input when 'Enter' is pressed.
To use it declare: DEFINE_GET_STRING before END directive.

• CLEAR_SCREEN - procedure to clear the screen, (done by scrolling
entire screen window), and set cursor position to top of it. To use it
declare: DEFINE_CLEAR_SCREEN before END directive.

• SCAN_NUM - procedure that gets the multi-digit SIGNED number
from the keyboard, and stores the result in CX register. To use it
declare: DEFINE_SCAN_NUM before END directive.

• PRINT_NUM - procedure that prints a signed number in AX
register. To use it declare: DEFINE_PRINT_NUM and
DEFINE_PRINT_NUM_UNS before END directive.

• PRINT_NUM_UNS - procedure that prints out an unsigned number
in AX register. To use it declare: DEFINE_PRINT_NUM_UNS
before END directive.

To use any of the above procedures you should first declare the
function in the bottom of your file (but before END!!), and then use CALL
instruction followed by a procedure name.

For example:

 19

8086 Assembler Tutorial Prof. Emerson Giovani Carati, Dr. Eng.

include 'emu8086.inc'

ORG 100h

LEA SI, msg1 ; ask for the number
CALL print_string ;
CALL scan_num ; get number in CX.

MOV AX, CX ; copy the number to AX.

; print the following string:
CALL pthis
DB 13, 10, 'You have entered: ', 0

CALL print_num ; print number in AX.

RET ; return to operating system.

msg1 DB 'Enter the number: ', 0

DEFINE_SCAN_NUM
DEFINE_PRINT_STRING
DEFINE_PRINT_NUM
DEFINE_PRINT_NUM_UNS ; required for print_num.
DEFINE_PTHIS

END ; directive to stop the compiler.

First compiler processes the declarations (these are just regular the

macros that are expanded to procedures). When compiler gets to CALL
instruction it replaces the procedure name with the address of the code
where the procedure is declared. When CALL instruction is executed
control is transferred to procedure. This is quite useful, since even if you
call the same procedure 100 times in your code you will still have
relatively small executable size. Seems complicated, isn't it? That's ok,
with the time you will learn more, currently it's required that you
understand the basic principle.

 20

8086 Assembler Tutorial Prof. Emerson Giovani Carati, Dr. Eng.

(Part 6)

Arithmetic and Logic Instructions

Most Arithmetic and Logic Instructions affect the processor status
register (or Flags)

As you may see there are 16 bits in this register, each bit is called a
flag and can take a value of 1 or 0.

• Carry Flag (CF) - this flag is set to 1 when there is an unsigned
overflow. For example when you add bytes 255+1 (result is not in
range 0...255). When there is no overflow this flag is set to 0.

• Zero Flag (ZF) - set to 1 when result is zero. For none zero result
this flag is set to 0.

• Sign Flag (SF) - set to 1 when result is negative. When result is
positive it is set to 0. Actually this flag take the value of the most
significant bit.

• Overflow Flag (OF) - set to 1 when there is a signed overflow.
For example, when you add bytes 100 + 50 (result is not in range -
128...127).

• Parity Flag (PF) - this flag is set to 1 when there is even number
of one bits in result, and to 0 when there is odd number of one bits.
Even if result is a word only 8 low bits are analyzed!

• Auxiliary Flag (AF) - set to 1 when there is an unsigned
overflow for low nibble (4 bits).

• Interrupt enable Flag (IF) - when this flag is set to 1 CPU reacts
to interrupts from external devices.

• Direction Flag (DF) - this flag is used by some instructions to
process data chains, when this flag is set to 0 - the processing is
done forward, when this flag is set to 1 the processing is done
backward.

 21

8086 Assembler Tutorial Prof. Emerson Giovani Carati, Dr. Eng.

There are 3 groups of instructions.

First group: ADD, SUB,CMP, AND, TEST, OR, XOR

These types of operands are supported:

REG, memory
memory, REG
REG, REG
memory, immediate
REG, immediate

REG: AX, BX, CX, DX, AH, AL, BL, BH, CH, CL, DH, DL, DI, SI, BP, SP.

memory: [BX], [BX+SI+7], variable, etc...

immediate: 5, -24, 3Fh, 10001101b, etc...

After operation between operands, result is always stored in first
operand. CMP and TEST instructions affect flags only and do not store a
result (these instruction are used to make decisions during program
execution).

These instructions affect these flags only:

CF, ZF, SF, OF, PF, AF.

• ADD - add second operand to first.
• SUB - Subtract second operand to first.
• CMP - Subtract second operand from first for flags only.
• AND - Logical AND between all bits of two operands. These rules

apply:
1 AND 1 = 1
1 AND 0 = 0
0 AND 1 = 0
0 AND 0 = 0

As you see we get 1 only when both bits are 1.

• TEST - The same as AND but for flags only.

• OR - Logical OR between all bits of two operands. These rules
apply:

1 OR 1 = 1
1 OR 0 = 1
0 OR 1 = 1
0 OR 0 = 0

As you see we get 1 every time when at least one of the bits is 1.

 22

8086 Assembler Tutorial Prof. Emerson Giovani Carati, Dr. Eng.

• XOR - Logical XOR (exclusive OR) between all bits of two operands.
These rules apply:

1 XOR 1 = 0
1 XOR 0 = 1
0 XOR 1 = 1
0 XOR 0 = 0

As you see we get 1 every time when bits are different from each
other.

Second group: MUL, IMUL, DIV, IDIV

These types of operands are supported:

REG
memory

REG: AX, BX, CX, DX, AH, AL, BL, BH, CH, CL, DH, DL, DI, SI, BP, SP.

memory: [BX], [BX+SI+7], variable, etc...

MUL and IMUL instructions affect these flags only:
 CF, OF

When result is over operand size these flags are set to 1, when result
fits in operand size these flags are set to 0.

For DIV and IDIV flags are undefined.

• MUL - Unsigned multiply:

when operand is a byte:
AX = AL * operand.

when operand is a word:
(DX AX) = AX * operand.

• IMUL - Signed multiply:

when operand is a byte:
AX = AL * operand.

when operand is a word:
(DX AX) = AX * operand.

• DIV - Unsigned divide:

 23

8086 Assembler Tutorial Prof. Emerson Giovani Carati, Dr. Eng.

when operand is a byte:
AL = AX / operand
AH = remainder (modulus). .

when operand is a word:
AX = (DX AX) / operand
DX = remainder (modulus). .

• IDIV - Signed divide:

when operand is a byte:
AL = AX / operand
AH = remainder (modulus). .

when operand is a word:
AX = (DX AX) / operand
DX = remainder (modulus). .

Third group: INC, DEC, NOT, NEG

These types of operands are supported:

REG
memory

REG: AX, BX, CX, DX, AH, AL, BL, BH, CH, CL, DH, DL, DI, SI, BP, SP.

memory: [BX], [BX+SI+7], variable, etc...

INC, DEC instructions affect these flags only:
 ZF, SF, OF, PF, AF.

NOT instruction does not affect any flags!

NEG instruction affects these flags only:
 CF, ZF, SF, OF, PF, AF.

• NOT - Reverse each bit of operand.

• NEG - Make operand negative (two's complement). Actually it
reverses each bit of operand and then adds 1 to it. For example 5
will become -5, and -2 will become 2.

 24

8086 Assembler Tutorial Prof. Emerson Giovani Carati, Dr. Eng.

(Part 7)

Program Flow Control

Controlling the program flow is a very important thing, this is where
your program can make decisions according to certain conditions.

• Unconditional Jumps

The basic instruction that transfers control to another point in the
program is JMP. The basic syntax of JMP instruction:

JMP label

To declare a label in your program, just type its name and add ":" to
the end, label can be any character combination but it cannot start with a
number, for example here are 3 legal label definitions:

label1:
label2:
a:

Label can be declared on a separate line or before any other
instruction, for example:

x1:
MOV AX, 1
x2: MOV AX, 2

Here is an example of JMP instruction:

ORG 100h

MOV AX, 5 ; set AX to 5.
MOV BX, 2 ; set BX to 2.

JMP calc ; go to 'calc'.

back: JMP stop ; go to 'stop'.

calc:
ADD AX, BX ; add BX to AX.
JMP back ; go 'back'.

stop:

RET ; return to operating system.

END ; directive to stop the compiler.

 25

8086 Assembler Tutorial Prof. Emerson Giovani Carati, Dr. Eng.

Of course there is an easier way to calculate the some of two
numbers, but it's still a good example of JMP instruction.

As you can see from this example JMP is able to transfer control
both forward and backward. It can jump anywhere in current code
segment (65,535 bytes).

• Short Conditional Jumps

Unlike JMP instruction that does an unconditional jump, there are
instructions that do a conditional jumps (jump only when some conditions
are in act). These instructions are divided in three groups, first group just
test single flag, second compares numbers as signed, and third compares
numbers as unsigned.

Jump instructions that test single flag

Instruction Description Condition Opposite
Instruction

JZ , JE Jump if Zero (Equal). ZF = 1 JNZ, JNE

JC , JB, JNAE Jump if Carry (Below, Not Above
Equal). CF = 1 JNC, JNB, JAE

JS Jump if Sign. SF = 1 JNS

JO Jump if Overflow. OF = 1 JNO

JPE, JP Jump if Parity Even. PF = 1 JPO

JNZ , JNE Jump if Not Zero (Not Equal). ZF = 0 JZ, JE

JNC , JNB,
JAE

Jump if Not Carry (Not Below, Above
Equal). CF = 0 JC, JB, JNAE

JNS Jump if Not Sign. SF = 0 JS

JNO Jump if Not Overflow. OF = 0 JO

JPO, JNP Jump if Parity Odd (No Parity). PF = 0 JPE, JP

As you can see there are some instructions that do that same thing,
that's correct, they even are assembled into the same machine code, so
it's good to remember that when you compile JE instruction - you will get
it disassembled as: JZ.

Different names are used to make programs easier to understand
and code.

 26

8086 Assembler Tutorial Prof. Emerson Giovani Carati, Dr. Eng.

Jump instructions for signed numbers

Instruction Description Condition Opposite
Instruction

JE , JZ Jump if Equal (=).
Jump if Zero. ZF = 1 JNE, JNZ

JNE , JNZ Jump if Not Equal (<>).
Jump if Not Zero. ZF = 0 JE, JZ

JG , JNLE Jump if Greater (>).
Jump if Not Less or Equal (not <=).

ZF = 0
and

SF = OF
JNG, JLE

JL , JNGE
Jump if Less (<).
Jump if Not Greater or Equal (not
>=).

SF <> OF JNL, JGE

JGE , JNL Jump if Greater or Equal (>=).
Jump if Not Less (not <). SF = OF JNGE, JL

JLE , JNG Jump if Less or Equal (<=).
Jump if Not Greater (not >).

ZF = 1
or

SF <> OF
JNLE, JG

<> - sign means not equal.

 27

8086 Assembler Tutorial Prof. Emerson Giovani Carati, Dr. Eng.

Jump instructions for unsigned numbers

Instruction Description Condition Opposite
Instruction

JE , JZ Jump if Equal (=).
Jump if Zero. ZF = 1 JNE, JNZ

JNE , JNZ Jump if Not Equal (<>).
Jump if Not Zero. ZF = 0 JE, JZ

JA , JNBE
Jump if Above (>).
Jump if Not Below or Equal (not
<=).

CF = 0
and

ZF = 0
JNA, JBE

JB , JNAE, JC

Jump if Below (<).
Jump if Not Above or Equal (not
>=).
Jump if Carry.

CF = 1 JNB, JAE, JNC

JAE , JNB, JNC
Jump if Above or Equal (>=).
Jump if Not Below (not <).
Jump if Not Carry.

CF = 0 JNAE, JB

JBE , JNA Jump if Below or Equal (<=).
Jump if Not Above (not >).

CF = 1
or

ZF = 1
JNBE, JA

Generally, when it is required to compare numeric values CMP
instruction is used (it does the same as SUB (subtract) instruction, but
does not keep the result, just affects the flags).

The logic is very simple, for example:

it's required to compare 5 and 2,

5 - 2 = 3

the result is not zero (Zero Flag is set to 0).

Another example:

it's required to compare 7 and 7,

7 - 7 = 0

 28

8086 Assembler Tutorial Prof. Emerson Giovani Carati, Dr. Eng.

the result is zero! (Zero Flag is set to 1 and JZ or JE will do the jump).

Here is an example of CMP instruction and conditional jump:

include emu8086.inc

ORG 100h

MOV AL, 25 ; set AL to 25.
MOV BL, 10 ; set BL to 10.

CMP AL, BL ; compare AL - BL.

JE equal ; jump if AL = BL (ZF = 1).

PUTC 'N' ; if it gets here, then AL <> BL,
JMP stop ; so print 'N', and jump to stop.

equal: ; if gets here,
PUTC 'Y' ; then AL = BL, so print 'Y'.

stop:

RET ; gets here no matter what.

END

Try the above example with different numbers for AL and BL, open
flags by clicking on [FLAGS] button, use [Single Step] and see what
happens, don't forget to recompile and reload after every change (use F5
shortcut).

All conditional jumps have one big limitation, unlike JMP instruction
they can only jump 127 bytes forward and 128 bytes backward (note
that most instructions are assembled into 3 or more bytes).

We can easily avoid this limitation using a cute trick:
o Get a opposite conditional jump instruction from the table

above, make it jump to label_x.
o Use JMP instruction to jump to desired location.
o Define label_x: just after the JMP instruction.

label_x: - can be any valid label name.

 29

8086 Assembler Tutorial Prof. Emerson Giovani Carati, Dr. Eng.

Here is an example:

include emu8086.inc

ORG 100h

MOV AL, 25 ; set AL to 25.
MOV BL, 10 ; set BL to 10.

CMP AL, BL ; compare AL - BL.

JNE not_equal ; jump if AL <> BL (ZF = 0).
JMP equal
not_equal:

; let's assume that here we
; have a code that is assembled
; to more then 127 bytes...

PUTC 'N' ; if it gets here, then AL <> BL,
JMP stop ; so print 'N', and jump to stop.

equal: ; if gets here,
PUTC 'Y' ; then AL = BL, so print 'Y'.

stop:

RET ; gets here no matter what.

END

Another, yet rarely used method is providing an immediate value
instead of a label. When immediate value starts with a '$' character
relative jump is performed, otherwise compiler calculates instruction that
jumps directly to given offset. For example:

ORG 100h

; unconditional jump forward:
; skip over next 2 bytes,
JMP $2
a DB 3 ; 1 byte.
b DB 4 ; 1 byte.

; JCC jump back 7 bytes:
; (JMP takes 2 bytes itself)
MOV BL,9
DEC BL ; 2 bytes.
CMP BL, 0 ; 3 bytes.
JNE $-7

RET

END

 30

8086 Assembler Tutorial Prof. Emerson Giovani Carati, Dr. Eng.

(Part 8)

Procedures

Procedure is a part of code that can be called from your program in
order to make some specific task. Procedures make program more
structural and easier to understand. Generally procedure returns to the
same point from where it was called.

The syntax for procedure declaration:

name PROC

 ; here goes the code
 ; of the procedure ...

RET
name ENDP

name - is the procedure name, the same name should be in the top and
the bottom, this is used to check correct closing of procedures.

Probably, you already know that RET instruction is used to return to
operating system. The same instruction is used to return from procedure
(actually operating system sees your program as a special procedure).

PROC and ENDP are compiler directives, so they are not assembled into
any real machine code. Compiler just remembers the address of
procedure.

CALL instruction is used to call a procedure.

Here is an example:

ORG 100h

CALL m1

MOV AX, 2

RET ; return to operating system.

m1 PROC
MOV BX, 5
RET ; return to caller.
m1 ENDP

END

The above example calls procedure m1, does MOV BX, 5, and
returns to the next instruction after CALL: MOV AX, 2.

 31

8086 Assembler Tutorial Prof. Emerson Giovani Carati, Dr. Eng.

There are several ways to pass parameters to procedure, the easiest
way to pass parameters is by using registers, here is another example of a
procedure that receives two parameters in AL and BL registers, multiplies
these parameters and returns the result in AX register:

ORG 100h

MOV AL, 1
MOV BL, 2

CALL m2
CALL m2
CALL m2
CALL m2

RET ; return to operating system.

m2 PROC
MUL BL ; AX = AL * BL.
RET ; return to caller.
m2 ENDP

END

In the above example value of AL register is update every time the
procedure is called, BL register stays unchanged, so this algorithm
calculates 2 in power of 4, so final result in AX register is 16 (or 10h).

Here goes another example,
that uses a procedure to print a Hello World! message:

ORG 100h

LEA SI, msg ; load address of msg to SI.

CALL print_me

RET ; return to operating system.

; ==
; this procedure prints a string, the string should be null
; terminated (have zero in the end),
; the string address should be in SI register:
print_me PROC

next_char:
 CMP b.[SI], 0 ; check for zero to stop
 JE stop ;

 MOV AL, [SI] ; next get ASCII char.

 MOV AH, 0Eh ; teletype function number.
 INT 10h ; using interrupt to print a char in AL.

 ADD SI, 1 ; advance index of string array.

 32

8086 Assembler Tutorial Prof. Emerson Giovani Carati, Dr. Eng.

 JMP next_char ; go back, and type another char.

stop:
RET ; return to caller.
print_me ENDP
; ==

msg DB 'Hello World!', 0 ; null terminated string.

END

"b." - prefix before [SI] means that we need to compare bytes, not words.
When you need to compare words add "w." prefix instead. When one of
the compared operands is a register it's not required because compiler
knows the size of each register.

 33

8086 Assembler Tutorial Prof. Emerson Giovani Carati, Dr. Eng.

(Part 9)

The Stack

Stack is an area of memory for keeping temporary data. Stack is
used by CALL instruction to keep return address for procedure, RET
instruction gets this value from the stack and returns to that offset. Quite
the same thing happens when INT instruction calls an interrupt, it stores
in stack flag register, code segment and offset. IRET instruction is used to
return from interrupt call.

We can also use the stack to keep any other data,
there are two instructions that work with the stack:

PUSH - stores 16 bit value in the stack.

POP - gets 16 bit value from the stack.

Syntax for PUSH instruction:

PUSH REG
PUSH SREG
PUSH memory
PUSH immediate

REG: AX, BX, CX, DX, DI, SI, BP, SP.
SREG: DS, ES, SS, CS.
memory: [BX], [BX+SI+7], 16 bit variable, etc...
immediate: 5, -24, 3Fh, 10001101b, etc...

Syntax for POP instruction:

POP REG
POP SREG
POP memory

REG: AX, BX, CX, DX, DI, SI, BP, SP.

SREG: DS, ES, SS, (except CS).

memory: [BX], [BX+SI+7], 16 bit variable, etc...

• PUSH and POP work with 16 bit values only!
• Note: PUSH immediate works only on 80186 CPU and later!

The stack uses LIFO (Last In First Out) algorithm, this means that if
we push these values one by one into the stack:

 34

8086 Assembler Tutorial Prof. Emerson Giovani Carati, Dr. Eng.

1, 2, 3, 4, 5

the first value that we will get on pop will be 5, then 4, 3, 2, and only
then 1.

It is very important to do equal number of PUSHs and POPs,

otherwise the stack maybe corrupted and it will be impossible to return to
operating system. As you already know we use RET instruction to return
to operating system, so when program starts there is a return address in
stack (generally it's 0000h).

PUSH and POP instruction are especially useful because we don't have
too much registers to operate with, so here is a trick:

• Store original value of the register in stack (using PUSH).

• Use the register for any purpose.

• Restore the original value of the register from stack (using POP).

Here is an example:

ORG 100h

MOV AX, 1234h
PUSH AX ; store value of AX in stack.

MOV AX, 5678h ; modify the AX value.

POP AX ; restore the original value of AX.

RET

END

 35

8086 Assembler Tutorial Prof. Emerson Giovani Carati, Dr. Eng.

Another use of the stack is for exchanging the values, here is an
example:

ORG 100h

MOV AX, 1212h ; store 1212h in AX.
MOV BX, 3434h ; store 3434h in BX

PUSH AX ; store value of AX in stack.
PUSH BX ; store value of BX in stack.

POP AX ; set AX to original value of BX.
POP BX ; set BX to original value of AX.

RET

END

The exchange happens because stack uses LIFO (Last In First Out)
algorithm, so when we push 1212h and then 3434h, on pop we will first
get 3434h and only after it 1212h.

The stack memory area is set by SS (Stack Segment) register, and SP
(Stack Pointer) register. Generally operating system sets values of these
registers on program start.

"PUSH source" instruction does the following:

• Subtract 2 from SP register.

• Write the value of source to the address SS:SP.

"POP destination" instruction does the following:

• Write the value at the address SS:SP to destination.

• Add 2 to SP register.

The current address pointed by SS:SP is called the top of the stack.
For COM files stack segment is generally the code segment, and stack
pointer is set to value of 0FFFEh. At the address SS:0FFFEh stored a
return address for RET instruction that is executed in the end of the
program.

In emu8086 microprosessor emulator you can visually see the
stack operation by clicking on [Stack] button on emulator window. The
top of the stack is marked with "<" sign.

 36

8086 Assembler Tutorial Prof. Emerson Giovani Carati, Dr. Eng.

(Part 10)

Macros

Macros are just like procedures, but not really. Macros look like
procedures, but they exist only until your code is compiled, after
compilation all macros are replaced with real instructions. If you declared
a macro and never used it in your code, compiler will simply ignore it.
emu8086.inc is a good example of how macros can be used, this file
contains several macros to make coding easier for you.

Macro definition:

name MACRO [parameters,...]

 <instructions>

ENDM

Unlike procedures, macros should be defined above the code that uses it,
for example:

MyMacro MACRO p1, p2, p3

 MOV AX, p1
 MOV BX, p2
 MOV CX, p3

ENDM

ORG 100h

MyMacro 1, 2, 3

MyMacro 4, 5, DX

RET

The above code is expanded into:

MOV AX, 00001h
MOV BX, 00002h
MOV CX, 00003h
MOV AX, 00004h
MOV BX, 00005h
MOV CX, DX

 37

8086 Assembler Tutorial Prof. Emerson Giovani Carati, Dr. Eng.

Some important facts about macros and procedures:

• When you want to use a procedure you should use CALL instruction, for
example:

CALL MyProc

• When you want to use a macro, you can just type its name. For example:

MyMacro

• Procedure is located at some specific address in memory, and if you use the same
procedure 100 times, the CPU will transfer control to this part of the memory.
The control will be returned back to the program by RET instruction. The stack
is used to keep the return address. The CALL instruction takes about 3 bytes, so
the size of the output executable file grows very insignificantly, no matter how
many time the procedure is used.

• Macro is expanded directly in program's code. So if you use the same macro 100
times, the compiler expands the macro 100 times, making the output executable
file larger and larger, each time all instructions of a macro are inserted.

• You should use stack or any general purpose registers to pass parameters to
procedure.

• To pass parameters to macro, you can just type them after the macro name. For
example:

MyMacro 1, 2, 3

• To mark the end of the macro ENDM directive is enough.

• To mark the end of the procedure, you should type the name of the procedure
before the ENDP directive.

Macros are expanded directly in code, therefore if there are labels inside
the macro definition you may get "Duplicate declaration" error when
macro is used for twice or more. To avoid such problem, use LOCAL
directive followed by names of variables, labels or procedure names. For
example:

MyMacro2 MACRO
 LOCAL label1, label2

 CMP AX, 2
 JE label1
 CMP AX, 3
 JE label2

 38

8086 Assembler Tutorial Prof. Emerson Giovani Carati, Dr. Eng.

 label1:
 INC AX
 label2:
 ADD AX, 2
ENDM
ORG 100h

MyMacro2

MyMacro2

RET

If you plan to use your macros in several programs, it may be a good idea
to place all macros in a separate file. Place that file in Inc folder and use
INCLUDE file-name directive to use macros. See Library of common
functions - emu8086.inc for an example of such file.

