FSC1057: Introdução à Astrofísica

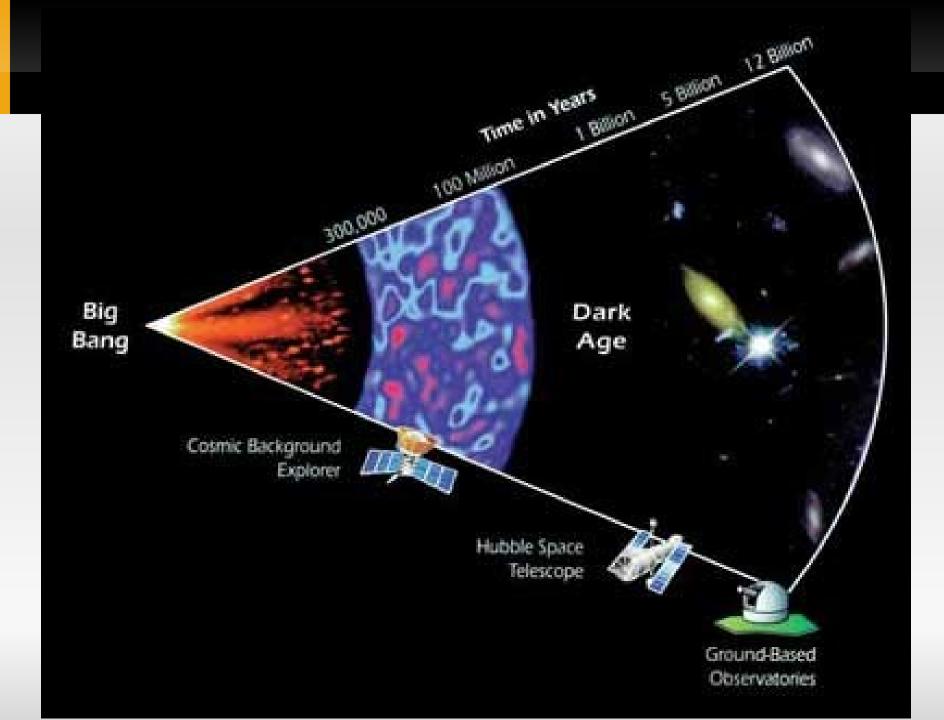
O Big Bang e a Evolução do Universo

Rogemar A. Riffel

Modelos do Universo

- Universo estacionário (imutável no tempo). Herman Bondi (1919-2005), Thomas Gold (1920-2004) e Fred Hoyle (1915-2001).
- Universo evolutivo (teve uma origem no tempo).
 Lemaître (1927) foi provavelmente o primeiro a propor um modelo específico para a origem do universo, a partir de um átomo primordial.

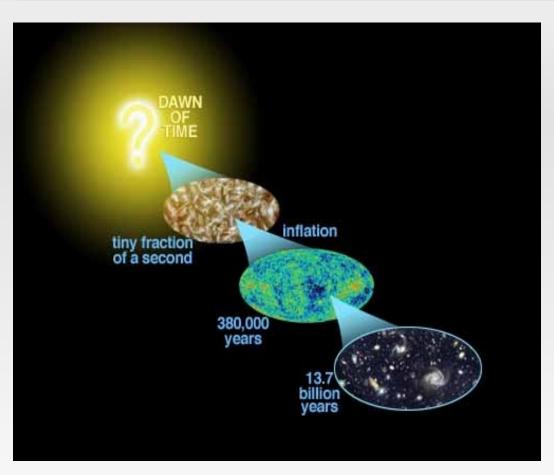
O Big Bang


- O universo iniciou a partir de um estado extremamente quente e extremamente denso, em que toda a matéria e toda a radiação estavam contidas num espaço infinitamente pequeno.
- Big Bang = flutuação quântica do vácuo (proposto por E.Tryon em 1973).
- Nos primeiros momentos do universo ele era tão quente que a colisão de fótons podia produzir partículas materiais.
- À medida que o universo se expande, ele esfria.
- Quanto menor a temperatura, menor a energia de radiação, e menor a massa das partículas que podem ser produzidas nas colisões de fótons.

Evolução do Universo

Idade cósmica	Temperatura	Eventos marcantes	
< 10 ⁻⁴⁴ segundos	> 10 ³² K	Big Bang. Unificação das 4 forças. Era de Planck .	
10 ⁻⁴⁴ segundos	10^{32} K	Gravidade se separa das outras forças. Era das GUT's (teorias da grande unificação das forças nucleares forte e fraca e da força eletromagnética).	
10 ⁻³⁵ segundos	10 ²⁸ K	Força nuclear forte se separa da força eletro-fraca	
10 ⁻³² segundos	10 ²⁷ K	Fim da era da Inflação. Universo se expande rapidamente.	
10 ⁻¹⁰ segundos	10 ¹⁵ K	Era da radiação . Forças eletromagnéticas e fracas se separam.	
10 ⁻⁷ segundos	111 () + + V	Era das partículas pesadas (era hadrônica) . A colisão de fótons dá origem a prótons, antiprótons, quarks, e antiquarks.	

Evolução do Universo


<u> </u>			
10 ⁻⁷ segundos	10 ¹⁴ K	Era das partículas pesadas (era hadrônica). A colisão de fótons dá origem a prótons, antiprótons, quarks, e antiquarks.	
10^{12} K sufficient		Era das partículas leves (era leptônica). Fótons retém energia suficiente apenas para construirem partículas leves como elétrons e pósitrons.	
3 minutos	10 ¹⁰ K	Era da nucleossíntese. Prótons e elétrons interagem para formar nêutrons. Prótons e nêutrons formam núcleos de deuté hélio, e pequena quantidade de lítio e berílio. Todos os átomos encontram-se ionizados.	
380 000 anos	10 ³ K	Era da recombinação . Os elétrons se unem aos núcleos para formarem os átomos. A radiação pode fluir livremente pelo espaço. (O universo fica transparente.)	
1 ×10 ⁹ anos	20 K	Formação das galáxias .	
10 ×10 ⁹ anos	3 K	Era presente . Formação do sistema solar. Desenvolvimento da vida.	

Evidências observacionais a favor do Big Bang

- 1. A expansão do universo (Lei de Hubble)
- 2. A escuridão da noite (paradoxo de Olbers)
- 3. A radiação cósmica de fundo
- 4. A abundância observada de hélio no universo: A quantidade de hélio formado no interior das estrelas corresponde a apenas 10% do hélio observado no universo
 - Isso diz que o hélio deve ter se formado no início, antes da formação de galáxias e estrelas.
 - A teoria do Big Bang prevê que parte do hidrogênio inicial do universo deve ter se transformado em hélio durante a nucleossíntese inicial.

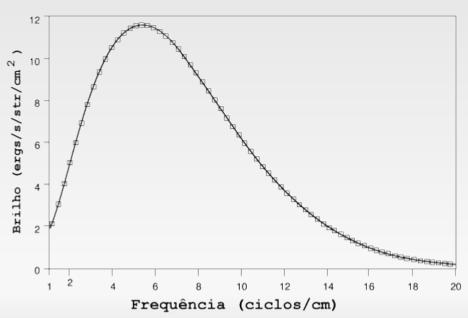
Radiação cósmica de fundo (CMB)

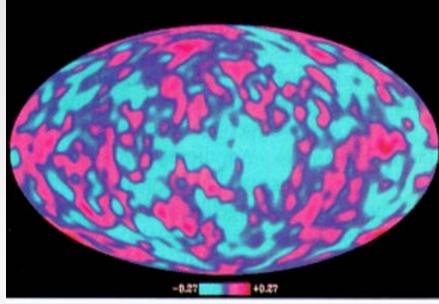
descoberta em 1963, por Arno Penzias e Robert Wilson (observação) e David Dick, James Peebles, Peter Roll e David Wilkinson (interpretação)

predita teoricamente em 1948, por Alpher, Herman e Gamow

temperatura de corpo negro de ~3K

gerada na época da recombinação (idade = 700.000 anos)

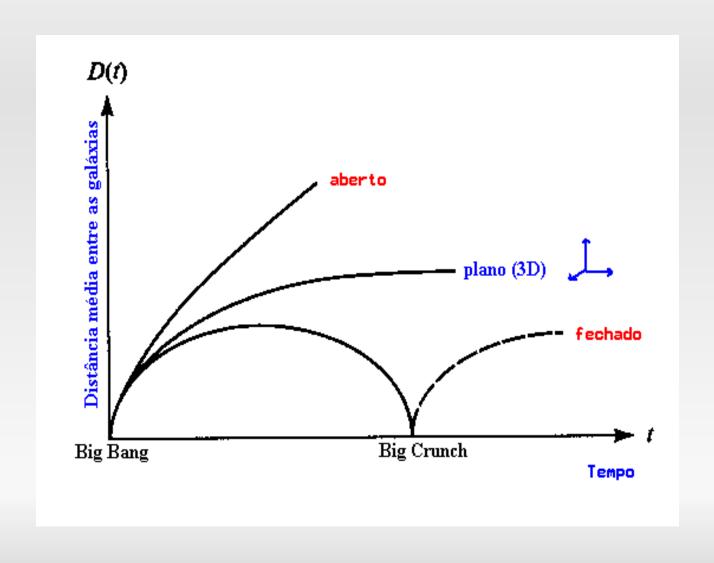

COBE (Cosmic Background Explorer) - 1989,1992



Opera ma faixa de microondas com resolução angular de 7 graus

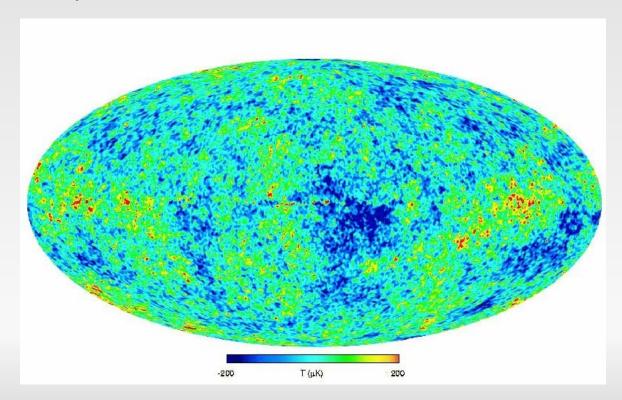
COBE

- temperatura de corpo negro de 2,7K
- pequenas variações de temperatura -> flutuações de densidades -> formação de galáxias



CMB segue uma distribuição de Planck

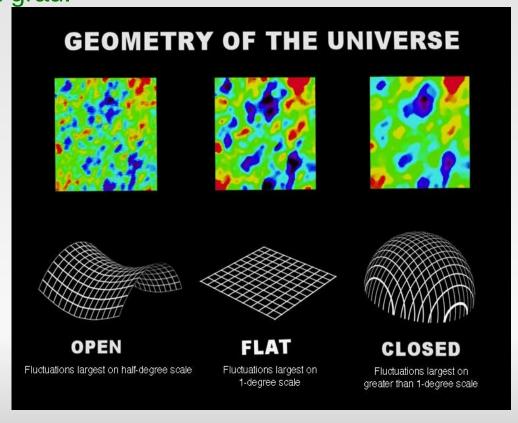
Qual o futuro do universo?


- Depende da quantidade de energia total no universo:
- Energia total positiva ou nula → Expansão perpétua (universo aberto ou plano)
- Energia total negativa → Expansão interrompida, seguida de contração (universo fechado)

Qual o futuro do universo?

WMAP - Wilkinson Microwave Anisotropy Probe - 2001

- resolução angular de 0,21 graus em 93 GHz
- idade do universo = 13,7 +/- 2 bilhões de anos
- universo é plano



WMAP - Wilkinson Microwave Anisotropy Probe - 2001

 universo aberto: linhas partindo de um mesmo ponto divergem, fazendo objetos distantes parecerem menores. As flutuações na radiação de fundo aparecerão maiores numa escala de 0,5 grau.

 universo plano: linhas partindo de um mesmo ponto permanecem paralelas; as flutuações de ~1 grau.

 universo fechado: linhas partindo de pontos diferentes convergem, fazendo objetos distantes parecerem maiores: flutuações ~1 grau.

Densidade de matéria no universo

- Parâmetro de densidade: $\Omega_0 = \rho/\rho_c$
- Densidade crítica: é a densidade marginalmente necessária para interromper a expansão $\rho_c = 3H_0^2/(8\pi \text{ G})$
 - $\rho_c = 1.1 \times 10^{-26} \text{ kg/m}^3$ (= 6 átomos de hidrogênio por metro cúbico!)
- Densidade de matéria luminosa (obtida por contagem de galáxias):
 - $\rho_{ml} \approx 2 \times 10^{-28} \text{ kg/m}^3 \rightarrow \Omega_0 \approx 0.01 \text{ (aberto!)}$
- Densidade de matéria total (obtida pelas curvas de rotação das galáxias e aglomerados e por lentes gravitacionais) = matéria luminosa + matéria escura:
 - $\rho_{\rm m} \approx 2 \times 10^{-27} \text{ kg/m}^3 \Rightarrow \Omega_0 \approx 0.2 0.3 \text{ (ainda aberto!)}$

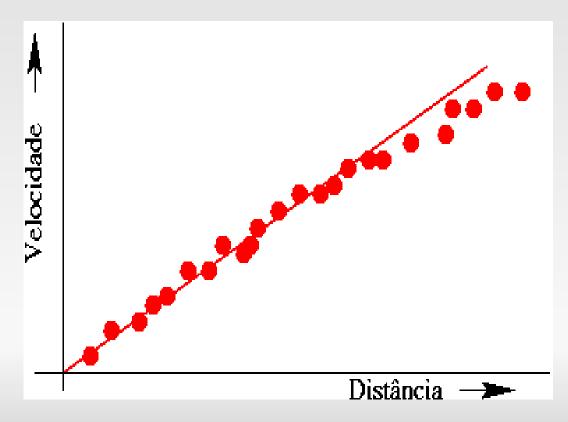
Big Bang: Perguntas não respondidas

- De onde surgiram as estruturas do Universo?
 - A formação de estruturas como galáxias exigem que houvessem flutuações de densidade nos primórdios do universo.
 - Essas flutuações não existem no Big Bang padrão.

Big Bang: Perguntas não respondidas

- Por que o universo em grande escala é tão homogêneo e isotrópico? (Problema do horizonte)
 - Assim como o Big Bang padrão não prevê a existência das pequenas variações de densidade no início do universo, ele também não prevê a ausência de grandes variações de densidade que são observadas na radiação cósmica de fundo.
 - A radiação cósmica de fundo apresenta uma grande isotropia;
 - duas regiões opostas no céu têm a mesma aparência = estiveram juntas no passado
 - Big Bang: quando essas regiões emitiram a radiação elas já se encontravam separadas por uma distância maior do que a luz poderia percorrer para vermos a radiação provinda delas (problema do horizonte).
 - A menos que o universo tivesse iniciado perfeitamente homogêneo (e então nunca teriam se formado as galáxias), não existe razão para que ele seja tão homogêneo hoje.

Big Bang: Perguntas não respondidas


- Por que a densidade do universo é tão próxima da densidade crítica?
 (Problema da Planicidade)
 - A densidade de matéria no universo é de 20 a 100% da densidade critica. Por que não é 1000% ou 0,001%?
 - O fato de a densidade do universo ser hoje tão próxima da crítica, requer que no início essa densidade era diferente da densidade crítica por menos de uma parte em 10¹⁵.
 - O Big Bang padrão não diz nada a respeito de qual deve ser a densidade do universo.

O Big Bang com Inflação

- Por volta de 1980, o físico Alan Guth propôs a teoria da Inflação, que poderia responder essas perguntas. Essa teoria diz que, no início do universo, quando a força forte se separou das outras forças, houve uma enorme liberação de energia que fez o universo se expandir por um fator de 10³⁰ em menos de 10⁻³⁶ s. Essa super expansão é chamada Inflação.
- A inflação teria tornado "desconectadas" duas regiões que eram anteriormente conectadas, respondendo assim ao "problema do horizonte"
- Resolve também o problema da planicidade, pois qualquer curvatura que o universo tivesse tido anteriormente ao período da inflação teria desaparecido com a expansão rápida

Repulsão cósmica

 Observações de supernovas em galáxias distantes indicam que essas galáxias estão se movendo mais lentamente do que seria esperado para uma expansão constante → a expansão está se acelerando!

Repulsão cósmica

 Energia escura: uma espécie de força de "repulsão cósmica" que faz o universo se expandir aceleradamente. Essa energia constitui cerca de 70% do universo.

	Tipo	Porcentagem da densidade crítica
Energia Escura	Energia escura	73%
	Matéria escura	23%
	Matéria normal	4%
	Radiação	0,005%

As quatro forças da natureza

- 1. Gravidade: é a interação entre corpos devido à sua massa; é a força dominante no universo em escalas maiores do que a Terra.
- 2. Eletromagnetismo: é a interação entre corpos devido à sua carga elétrica; é a força dominante em reações químicas e biológicas.
- 3. Força nuclear forte: é a força responsável por manter os prótons e nêutrons confinados dentro dos núcleos atômicos. É a mais forte das quatro forças, mas tem alcance muito curto (10⁻¹⁴m).
- 4. Força nuclear fraca: é a força menos conhecida; é responsável pela emissão de radiação e de partículas por núcleos instáveis. Seu alcance é tão curto quanto o da força forte.