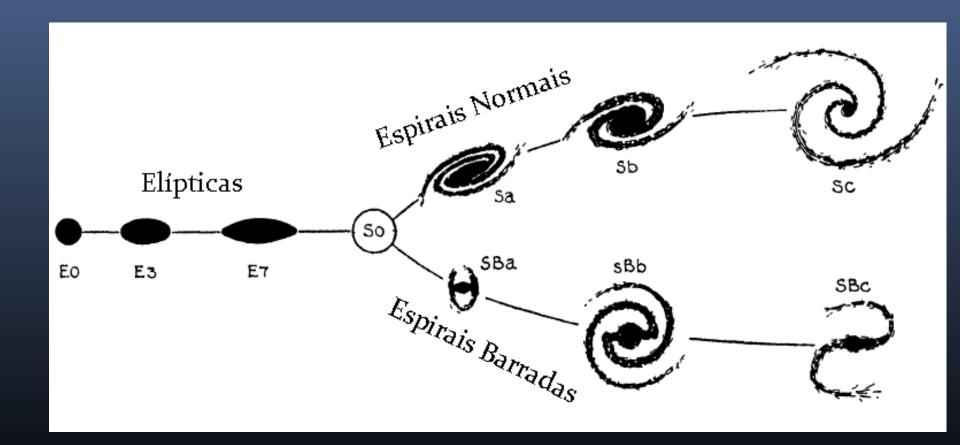
ASTROFÍSICA EXTRAGALÁTICA-FSC 819


GALÁXIAS ESPIRAIS

Astor João Schönell Júnior

- •As galáxias são classificadas morfologicamente (Hubble Sequence):
- -Espirais
- -Elípticas
- -Irregulares
- Galáxias SO

- •As galáxias espirais consistem em um disco com braços espirais e um bojo central.
- •São classificadas em dois subtipos: espirais normais S's e espirais barradas SB's.
- •Em cada uma dessas subclasses podemos ordenar em termos do brilho do bojo e do disco, que são denotadas como a, ab, b, bc, c, cd e d.

- •Olhando para a sequência do early-type (Sa's e SBa's) para o tipo tardio, vemos algumas diferenças que podem ser usadas para ajudar na classificação:
- •Um decréscimo na luminosidade do bojo e do disco com $L_{\text{bojo}}/L_{\text{disco}}\sim 0.3$ para Sa's e ~ 0.05 para Sc's.
- •Um aumento na abertura angular dos braçoes espirais de ~6° para Sa's para ~18° para Sc's.
- •Um aumento no brilho dos braços espirais: Sa's têm uma distribuição de estrelas mais "suave" ao longo dos braços espirais enquanto em Sc's o brilho está mais pontual em áreas com mais estrelas e regiões HII.

- Massas e luminosidades comuns em galáxias espirais são, respectivamente:
 - $-16 \ge M_B \le -23 \text{ e } 10^9 M_{sol} \ge M \ge 10^{12} M_{sol}$.
- Barras são comuns em galáxias espirais, com aproximadamente 70% de todos os discos de galáxias contendo uma barra em larga escala de estrelas.
- Essas barras perturbam o eixo de simetria do potencial gravitacional trazendo algumas consequências como uma redistribuição do momento angular do gás, das estrelas e da matéria escura. Pode ainda perturbar as orbitas do gás fazendo com que este vá em direção ao centro da galáxia (este pode ser um fator importante na atividade do núcleo).

Perfil de brilho para Espirais

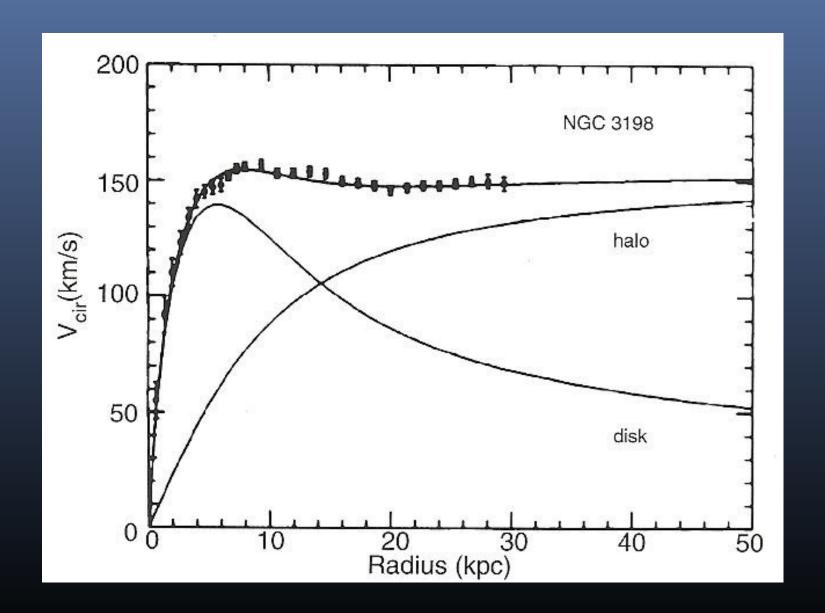
$$\mu_{bojo}(R)=\mu_e+8.3268\left[\left(rac{R}{R_e}
ight)^{1/4}-1
ight]$$
 Lei de de Vaucouleurs expressa em termos de -2.5log(l)

$$\mu_{disco}(R) = \mu_0 + 1.09 \left(\frac{R}{h_r}\right)$$

Quando Ken Freeman analisou uma amostra de galáxias espirais ele chegou ao resultado de que o brilho superficial central dos discos tem um espalhamento muito baixo, ou seja, é muito similar para diferentes galáxias (Lei de Freeman). Após algum tempo a lei de Freeman confirmada para galáxias espirais "normais".

- A galáxia M31 (galáxia de Andromeda), nossa vizinha, é uma galáxia muito parecida com a Via Láctea.
- Um halo estelar com estrelas gigantes vermelhas foi detectado na M31, que se estende até mais de 150 kpc do seu centro.
- O perfil de brilho dessa distribuição estelar indica um perfil de brilho para o bojo seguindo a lei de de Vaucouleurs. Entretanto, para raios maiores o perfil passa a seguir uma lei de potência que corresponde a uma densidade radial de aprox. $ho{\sim}r^{-3}$. Isso mostra que halos estelares formam um tipo genérico propriedades em espirais.

- O disco espesso em outras espirais só pode ser estudado se estivermos vendo ela de lado.
- Nestes casos, um disco espesso pode ser observado como uma população estelar fora do plano do disco e muito além da escala de altura do disco fino.
- •Como no caso da Via Láctea, a escala de altura de uma população estelar aumenta com a sua idade.
- •Para galáxias com disco luminoso, o disco espesso não contribui muito para a luminosidade total, exceto para galáxias com o disco de pouca massa e velocidades rotacionais maiores que 120 km/s, onde o disco espesso contribui com quase a metade da luminosidade.


Curvas de rotação e Matéria

- Curvas de rotação de outras galáxias são mais fáceis de serem medidas pois somos capazes de observá-las de fora.
- As medidas são feitas através do efeito Doppler assumindo que os discos são intrinsecamente simétricos axialmente (exceto pelos braços espirais).
- Principalmente as estrelas e gás HI são usados como "traçadores de luz" onde o HI observável está normalmente mais estendido que o disco estelar.

- Assim como a Via láctea, outras galáxias também apresentam rotação mais rápida em regiões mais externas do que esperávamos graças à lei de Keppler e a distribuição de matéria visível.
- A curva de rotação não diminui $com^R \ge h_r$, assim como esperado. Assumimos então que espirais são rodeadas por um halo de matéria escura, cuja massa pode ser determinada a partir da curva de rotação da galáxia.

Sabemos então que a massa de matéria escura pode ser determinada através da curva de rotação das galáxias, logo, basta estabelecer a relação entre a força gravitacional e a força centrífuga que chegamos à relação da massa de matéria escura:

$$M_{dark}(R) = \frac{R}{G} \left[v^2(R) - v_{lum}^2(R) \right]$$

- A massa de uma espiral aumenta com a luminosidade.
- A maior parte da massa é de matéria não visível.
- O que é a matéria escura??

Populações estelares

- A cor de galáxias espirais depende do seu tipo, onde as do tipo tardio são mais azuis.
- Isto significa que a fração de estrelas massivas azuis cresce ao longo da sequência de Hubble até espirais do tipo tardio.
- Isso concorda com o fato de observarmos mais regiões de formação estelar nos braços de espirais do tipo Sc.

- A formação de estrelas requer gás e a fração de gás é maior para tipos tardios, como pode ser medido através da linha do 21 cm do HI, do H alfa e CO.
- Valores típicospara a razão $M_{g\acute{a}s}/M_{total}$ são de 0.04 para Sa's, 0.08 para Sb's e 0.16 para Sc's.
- Temos ainda que a fração de gás molecular em relação ao total de gás é menor para espirais do tipo tardio.
- A massa de poeira é menor do que 1% do que a massa de gás.

- Poeira em combinação com estrelas quentes são as principais fontes de emissão no infravermelho distante.
- Galáxias Sc emitem muito mais no FIR (far-infrared) do que Sa's, e espirais barradas possuem maior emissão no FIR do que galáxias normais.
- A emissão no FIR é devida à emissão de poeira quente, que é aquecida por UV de estrelas quentes.

- Um gradiente de cor proeminente aparece nas espirais: elas são vermelhas no centro e azuladas nas regiões mais externas.
- Podemos identificar pelo menos duas razões para isso:
- Metalicidade sabemos que estrelas com maior metalicidade são mais vermelhas.
- Formação estelar a fração de gás no bojo é menor do que no disco, logo, menos estrelas se formam no bojo, resultando em uma população estelar mais velha e mais vermelha no geral.
- Em espirais a metalicidade aumenta com a luminosidade.

Estrutura Espiral

- Os braços espirais são as regiões mais azuis e contém estrelas jovens e regiões HII. Por esta razão, o contraste de brilho dos braços espirais aumenta a medida que observamos em comprimentos de onda menores.
- Estruturas espirais são muito proeminentes com um filtro azul.
- A questão é: como se formam os braços espirais?

- A resposta mais óbvia é que o gás, as estrelas estão rodando ao redor do centro da galáxia com o resto do disco.
- Mas esse cenário não explica os braços espirais graças a rotação diferencial, caso contrário, teríamos braços espirais muito mais "enrolados" do que o que realmente observamos.
- Supomos então que os braços são uma estrutura em forma de onda de densidade, com densidades maiores do que a média do disco.

• Se o gás em órbita ao redor do centro da galáxia entra em uma dessas regiões de maior densidade ele é comprimido e dá origem a uma zona de formação estelar.

Para melhor entender estas "ondas de densidade", podemos pensar nas ondas na superfície de um lago:

Picos em diferentes tempos consistem em partículas de água diferentes e a velocidade das ondas não é de maneira nenhuma a velocidade da maior parte da água.